Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the most of stem cells

31.03.2004


New storage method amplifies cells available for science



Like many other kinds of cells used in biomedical research, human embryonic stem cells are stored and transported in a cryopreserved state, frozen to -320 degrees Fahrenheit, the temperature of their liquid nitrogen storage bath.

But when scientists thaw the cells for use in the lab, less than 1 percent awake from their frigid slumber and assume their undifferentiated state. This ’blank slate’ form is characteristic of stem cells and essential for the basic science required before the promising cells are ready for the clinic. So scientists are required to place the few survivors in culture and painstakingly tend to them for weeks before new colonies are abundant enough to conduct experiments.


"Human embryonic stem cells have a very low survival rate following cryopreservation, which causes several problems," says Sean Palecek, a University of Wisconsin-Madison professor of chemical and biological engineering.

Not only does that low rate make working with human embryonic stem cells time and labor intensive, but - because so few survive freezing - it may also mean that natural selection is altering the stored cells in unknown and undesired ways, he says.

But now Palecek, along with colleagues Juan de Pablo and Lin Ji, are putting the finishing touches on a new method for preserving and storing the finicky cells. The work, presented today (March 30) at a meeting of the American Chemical Society, promises to greatly amplify the number of cells that survive their enforced hibernation, that remain undifferentiated and that are more readily available for research. What’s more, with more survivors, genetic variability becomes less of an issue.

By freezing the cells attached to a gel matrix instead of suspended in solution, and adding the chemical trehalose - a disaccharide or sugar that some animals and microbes produce to protect cells and survive in dry, low-temperature conditions - the Wisconsin team was able to increase stem cell survival rates by more than an order of magnitude, with as many as 20 percent of a cell culture surviving the freezing-and-thawing process.

"By using the gel and adding the disaccharide to cells, you can increase their chances of survival," notes de Pablo, also a UW-Madison professor of chemical and biological engineering. "Twenty percent survival doesn’t sound like much, but that’s a huge improvement. Taking the few survivors from current methods and growing them takes weeks. It’s a real bottleneck in the field.

"Also, the amount of uncontrolled differentiation is reduced drastically."

The ideal system for preserving and storing valuable cells and other biological materials, says de Pablo, would be one where the cells are freeze-dried, and that’s the ultimate goal of this line of research.

The Wisconsin group has already successfully developed methods for freeze- drying bacterial cultures used to make cheese and yogurt. Their method, now in use commercially, reduces storage and transportation costs for food processors.

"The idea now," explains de Pablo, "is to extend the technology to mammalian cells."

He cites blood products as an example of cells that could potentially be freeze-dried for easy long-term storage, and blood products have become a new focus for his research group.

"If you can freeze-dry these types of cells, you can store them for indefinite amounts of time" and costs would be greatly reduced, he says. Such a technology would also help alleviate the chronic shortages of blood products. Some blood products are perishable and must now be discarded after a certain amount of time in storage. Freeze-dried blood products would have no such liability. Moreover, it would make blood products more readily available for emergencies and mass casualty events, and in remote and difficult settings such as a battlefield environment.

The work by Palecek, de Pablo and Ji, which was supported by a grant from the Defense Advanced Research Projects Agency (DARPA), is also scheduled for publication in an upcoming issue of the journal Biotechnology and Bioengineering. A patent for the technology has been applied for through the Wisconsin Alumni Research Foundation.


- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Sean P. Palecek | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>