Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the most of stem cells

31.03.2004


New storage method amplifies cells available for science



Like many other kinds of cells used in biomedical research, human embryonic stem cells are stored and transported in a cryopreserved state, frozen to -320 degrees Fahrenheit, the temperature of their liquid nitrogen storage bath.

But when scientists thaw the cells for use in the lab, less than 1 percent awake from their frigid slumber and assume their undifferentiated state. This ’blank slate’ form is characteristic of stem cells and essential for the basic science required before the promising cells are ready for the clinic. So scientists are required to place the few survivors in culture and painstakingly tend to them for weeks before new colonies are abundant enough to conduct experiments.


"Human embryonic stem cells have a very low survival rate following cryopreservation, which causes several problems," says Sean Palecek, a University of Wisconsin-Madison professor of chemical and biological engineering.

Not only does that low rate make working with human embryonic stem cells time and labor intensive, but - because so few survive freezing - it may also mean that natural selection is altering the stored cells in unknown and undesired ways, he says.

But now Palecek, along with colleagues Juan de Pablo and Lin Ji, are putting the finishing touches on a new method for preserving and storing the finicky cells. The work, presented today (March 30) at a meeting of the American Chemical Society, promises to greatly amplify the number of cells that survive their enforced hibernation, that remain undifferentiated and that are more readily available for research. What’s more, with more survivors, genetic variability becomes less of an issue.

By freezing the cells attached to a gel matrix instead of suspended in solution, and adding the chemical trehalose - a disaccharide or sugar that some animals and microbes produce to protect cells and survive in dry, low-temperature conditions - the Wisconsin team was able to increase stem cell survival rates by more than an order of magnitude, with as many as 20 percent of a cell culture surviving the freezing-and-thawing process.

"By using the gel and adding the disaccharide to cells, you can increase their chances of survival," notes de Pablo, also a UW-Madison professor of chemical and biological engineering. "Twenty percent survival doesn’t sound like much, but that’s a huge improvement. Taking the few survivors from current methods and growing them takes weeks. It’s a real bottleneck in the field.

"Also, the amount of uncontrolled differentiation is reduced drastically."

The ideal system for preserving and storing valuable cells and other biological materials, says de Pablo, would be one where the cells are freeze-dried, and that’s the ultimate goal of this line of research.

The Wisconsin group has already successfully developed methods for freeze- drying bacterial cultures used to make cheese and yogurt. Their method, now in use commercially, reduces storage and transportation costs for food processors.

"The idea now," explains de Pablo, "is to extend the technology to mammalian cells."

He cites blood products as an example of cells that could potentially be freeze-dried for easy long-term storage, and blood products have become a new focus for his research group.

"If you can freeze-dry these types of cells, you can store them for indefinite amounts of time" and costs would be greatly reduced, he says. Such a technology would also help alleviate the chronic shortages of blood products. Some blood products are perishable and must now be discarded after a certain amount of time in storage. Freeze-dried blood products would have no such liability. Moreover, it would make blood products more readily available for emergencies and mass casualty events, and in remote and difficult settings such as a battlefield environment.

The work by Palecek, de Pablo and Ji, which was supported by a grant from the Defense Advanced Research Projects Agency (DARPA), is also scheduled for publication in an upcoming issue of the journal Biotechnology and Bioengineering. A patent for the technology has been applied for through the Wisconsin Alumni Research Foundation.


- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Sean P. Palecek | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>