Student creating polymers to chaperon DNA across cell membrane

Ordinarily, the cell membrane prevents invasion by foreign genetic material, which is why genetic engineers often have to use a pipette and forced air to jab a new piece of a gene through the cell wall into the genome in order to carry out gene therapy or introduce particular attributes into a crop or organism.

But an undergraduate student at Virginia Tech has figured out how to chaperone DNA across cell membranes. Amanda Rudisin of Lucinda, Pa., a senior in biology, will present her team’s research at the 227th annual meeting of the American Chemical Society in Anaheim, Calif., March 28 through April 1, 2004.

Rudisin’s research looked at linear versus branched molecules in terms of chaperone ability, explains Timothy Long of Blacksburg, professor of chemistry in the College of Science at Virginia Tech. “The poster presents findings regarding the effects of polymer structures on complexation with DNA. Amanda has explored a novel way to transport DNA across cell membranes,” says Long. “She looks at the effect of the chemical structure of a gene transfer agent in a very fundamental way. The agent is a polymer that adheres to DNA and will cross the cell membrane.”

The poster, “Effects of topology upon transfection efficiency: Synthesis, characterization, and transfection of poly-2-(dimethylamino)ethyl methacrylate and poly-2-(dimethylamino)ethyl methacrylate-co-polyethylene glycol-dimethacrylate (Poly 432),” will be presented 6 to 8 p.m. Tuesday, March 30, in the Anaheim Convention Center Hall A as part of the Division of Polymer Chemistry’s program on Biomacromolecule Interactions with Synthetic Surfaces. Co-authors are Rudisin, three Virginia Tech professors, Willard H. Eyestone in the Department of Large Animal Clinical Sciences, William R. Huckle in the Department of Biomedical Science, and Long. Eyestone and Huckle are in the Virginia-Maryland Regional College of Veterinary Medicine.

Contact for additional information:
Tim Long, telong@vt.edu, (540) 231-2480
Will Eyestone, weyest@vt.edu, (540) 231-4834
Amanda Rudisin, arudisin@vt.edu

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.technews.vt.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors