Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use novel technology to extract RNA from archive formalin-fixed paraffin-embedded tissue

31.03.2004


High quality outcomes allow researchers to identify cancer-related genetic changes that span years



For the first time, Fox Chase Cancer Center researchers have demonstrated the ability to extract RNA from formalin-fixed, paraffin-embedded tissue samples archived for up to five years. What’s more, the technology used retrieves high-quality samples, allowing researchers to identify cancer-related genetic changes. Accepted as a "late-breaking" abstract, the research was presented today at the 95th Annual Meeting of the American Association for Cancer Research by Renata Coudry, M.D., a research pathologist at Fox Chase Cancer Center.

"Recent advances in both laser-capture microdissection (LCM) technology and microarray technology have revolutionized our investigation of the genetic basis of human cancer," said Coudry. "Pure cell populations can now be isolated by LCM and evaluated for changes in gene expression that accompany the development of cancer. However, applying these techniques to archived clinical specimens has been limited by our inability to extract high-quality genetic material from routinely processed clinical samples."


Hospitals are required to store tumor samples from surgical procedures in case further testing is needed. Biopsy tissue and other tissue specimens are universally preserved by being fixed in formalin and embedded in paraffin, a process that was thought to compromise DNA and RNA integrity. Messenger RNA (mRNA) indicates the activity of genes, or gene expression.

The Paradise Reagent System developed by Arcturus Bioscience Inc. provides an integrated system to isolate and amplify mRNA for analyzing global gene expression in archival specimens.

By retrospectively correlating treatment outcomes and genetic profiles, scientists could learn what genes are involved in certain forms of a specific cancer and tailor individual therapy for each patient. "At Fox Chase, we used the technology with great success to compare the gene expression profiles of normal and colorectal tumor tissue that had been archived for up to five years," Coudry said. "We are already applying this methodology to the identification of new molecular targets that may serve as biomarkers of cancer risk and chemopreventive response."

The Fox Chase group used laser capture to microdissect colonic crypt tissues from the archived samples. They then developed genetic profiles using microarray, or "gene chip," technology to evaluate the genetic changes in the tissue. The procedure uses glass "chips" to hold thousands of gene fragments that can be visualized by a computer. Because genes RNA extracted from in a blood or tissue sample will bind to the corresponding gene fragment on the chip, researchers can analyze the expression of thousands of the sample’s genes at once.


As research pathologist, Coudry works in the Fox Chase laboratory of cell biologist Margie L. Clapper, Ph.D., director of chemoprevention research at Fox Chase. In addition to Coudry and Clapper, Fox Chase co-authors of the study include postdoctoral associate Sibele I. Meireles, Ph.D.; bioinformatician Radka Stoyanova, Ph.D.; Harry S. Cooper, M.D., vice chairman of clinical laboratories and chief of surgical pathology and immunohistochemistry; and Paul F. Engstrom, M.D., senior vice president for population science

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at www.fccc.edu.

Karen Carter Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>