Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use novel technology to extract RNA from archive formalin-fixed paraffin-embedded tissue

31.03.2004


High quality outcomes allow researchers to identify cancer-related genetic changes that span years



For the first time, Fox Chase Cancer Center researchers have demonstrated the ability to extract RNA from formalin-fixed, paraffin-embedded tissue samples archived for up to five years. What’s more, the technology used retrieves high-quality samples, allowing researchers to identify cancer-related genetic changes. Accepted as a "late-breaking" abstract, the research was presented today at the 95th Annual Meeting of the American Association for Cancer Research by Renata Coudry, M.D., a research pathologist at Fox Chase Cancer Center.

"Recent advances in both laser-capture microdissection (LCM) technology and microarray technology have revolutionized our investigation of the genetic basis of human cancer," said Coudry. "Pure cell populations can now be isolated by LCM and evaluated for changes in gene expression that accompany the development of cancer. However, applying these techniques to archived clinical specimens has been limited by our inability to extract high-quality genetic material from routinely processed clinical samples."


Hospitals are required to store tumor samples from surgical procedures in case further testing is needed. Biopsy tissue and other tissue specimens are universally preserved by being fixed in formalin and embedded in paraffin, a process that was thought to compromise DNA and RNA integrity. Messenger RNA (mRNA) indicates the activity of genes, or gene expression.

The Paradise Reagent System developed by Arcturus Bioscience Inc. provides an integrated system to isolate and amplify mRNA for analyzing global gene expression in archival specimens.

By retrospectively correlating treatment outcomes and genetic profiles, scientists could learn what genes are involved in certain forms of a specific cancer and tailor individual therapy for each patient. "At Fox Chase, we used the technology with great success to compare the gene expression profiles of normal and colorectal tumor tissue that had been archived for up to five years," Coudry said. "We are already applying this methodology to the identification of new molecular targets that may serve as biomarkers of cancer risk and chemopreventive response."

The Fox Chase group used laser capture to microdissect colonic crypt tissues from the archived samples. They then developed genetic profiles using microarray, or "gene chip," technology to evaluate the genetic changes in the tissue. The procedure uses glass "chips" to hold thousands of gene fragments that can be visualized by a computer. Because genes RNA extracted from in a blood or tissue sample will bind to the corresponding gene fragment on the chip, researchers can analyze the expression of thousands of the sample’s genes at once.


As research pathologist, Coudry works in the Fox Chase laboratory of cell biologist Margie L. Clapper, Ph.D., director of chemoprevention research at Fox Chase. In addition to Coudry and Clapper, Fox Chase co-authors of the study include postdoctoral associate Sibele I. Meireles, Ph.D.; bioinformatician Radka Stoyanova, Ph.D.; Harry S. Cooper, M.D., vice chairman of clinical laboratories and chief of surgical pathology and immunohistochemistry; and Paul F. Engstrom, M.D., senior vice president for population science

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at www.fccc.edu.

Karen Carter Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>