Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon U. conducts first comprehensive proteomic analysis of developing animal

31.03.2004


First comprehensive proteomic analysis of how proteins change as an animal develops



Carnegie Mellon University scientists have performed the first comprehensive proteome analysis of protein changes that occur in a developing animal, making surprising findings that could require scientists to revise standard thinking about how proteins orchestrate critical steps in embryonic development.

Their findings could one day provide a sensitive way to measure how drugs or environmental chemicals affect specific protein networks and harm development.


The research, reported online (http://dev.biologists.org/content/vol131/issue3/) and in the February 1 issue of Development, found that specific cells set to change shape during a key growth step are actually poised for their transformation far in advance and that many types of proteins are involved.

"Our findings counter long-held assumptions that a limited number of proteins are responsible for this step of development and that they become active right before the cells change shape," said Jonathan Minden, principal investigator on the study and associate professor of biological sciences at Carnegie Mellon University.

The researchers studied the complete proteome, or all the proteins, within embryos of the fruitfly, Drosophila melanogaster. They compared proteomes at three stages of fruitfly development to witness changes that occurred as some cells folded into the body to form structures including the nerves, immune system and muscles. This process, called gastrulation, is a critical growth step for virtually every animal, from insects to humans.

During gastrulation, in a process called ventral furrow formation, column-shaped cells along the underside of the fruitfly become cone-shaped, which drives them to the interior or the embryo.

In their proteomic analysis, the Carnegie Mellon scientists found changes in the abundance of many types of proteins well before gastrulation. These included proteins that control metabolism, protein breakdown, protein production and the formation of the cell’s interior scaffolding, known as the cytoskeleton. Previous genetic studies have yielded limited information about the genes controlling the signaling pathway that specifies the ventral furrow cells. Moreover, these studies have failed to provide a coordinated framework for how the changes take place in concert.

To test that the protein changes they saw actually were critical to the formation of the ventral furrow, Minden and his colleagues used a technique called RNA interference to greatly decrease the expression of genes for altered proteins in the fruitfly embryos. They found that that the embryos failed to form ventral furrows.

"Our study demonstrates that the formation of the ventral furrow is a complex process that encompasses nearly all cellular processes," said Minden.

The scientists also found that only one protein was activated at the exact moment when cells changed shape. This protein is part of a complex cellular machine called the proteosome, which is responsible for breaking down proteins.

"This finding suggests that right before cells in the ventral furrow change shape, they break down proteins, perhaps the cytoskeletal proteins that preserve their columnar shape," said Minden.

To compare the abundance and kinds of proteins made at different stages of development, Minden and his colleagues used Difference Gel Electrophoresis, a tool created by Minden and commercialized by Amersham, plc. Using DIGE, scientists label two protein samples with different color fluorescent dyes and then run both samples on the same gel, which separates proteins by size and electrical charge. A computer program analyzes the gel to detect differences in the abundance and presence of all the proteins from the two samples and reports them back to the investigator.

"Our study is really a starting point. Comparing the proteomes at different stages in an animal’s development, together with other experimental tools, can help uncover the network of functions and interactions required for a variety of developmental processes and disease states." Minden said.


The research was funded by the National Institutes of Health.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/
http://dev.biologists.org/content/vol131/issue3/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>