Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon U. conducts first comprehensive proteomic analysis of developing animal

31.03.2004


First comprehensive proteomic analysis of how proteins change as an animal develops



Carnegie Mellon University scientists have performed the first comprehensive proteome analysis of protein changes that occur in a developing animal, making surprising findings that could require scientists to revise standard thinking about how proteins orchestrate critical steps in embryonic development.

Their findings could one day provide a sensitive way to measure how drugs or environmental chemicals affect specific protein networks and harm development.


The research, reported online (http://dev.biologists.org/content/vol131/issue3/) and in the February 1 issue of Development, found that specific cells set to change shape during a key growth step are actually poised for their transformation far in advance and that many types of proteins are involved.

"Our findings counter long-held assumptions that a limited number of proteins are responsible for this step of development and that they become active right before the cells change shape," said Jonathan Minden, principal investigator on the study and associate professor of biological sciences at Carnegie Mellon University.

The researchers studied the complete proteome, or all the proteins, within embryos of the fruitfly, Drosophila melanogaster. They compared proteomes at three stages of fruitfly development to witness changes that occurred as some cells folded into the body to form structures including the nerves, immune system and muscles. This process, called gastrulation, is a critical growth step for virtually every animal, from insects to humans.

During gastrulation, in a process called ventral furrow formation, column-shaped cells along the underside of the fruitfly become cone-shaped, which drives them to the interior or the embryo.

In their proteomic analysis, the Carnegie Mellon scientists found changes in the abundance of many types of proteins well before gastrulation. These included proteins that control metabolism, protein breakdown, protein production and the formation of the cell’s interior scaffolding, known as the cytoskeleton. Previous genetic studies have yielded limited information about the genes controlling the signaling pathway that specifies the ventral furrow cells. Moreover, these studies have failed to provide a coordinated framework for how the changes take place in concert.

To test that the protein changes they saw actually were critical to the formation of the ventral furrow, Minden and his colleagues used a technique called RNA interference to greatly decrease the expression of genes for altered proteins in the fruitfly embryos. They found that that the embryos failed to form ventral furrows.

"Our study demonstrates that the formation of the ventral furrow is a complex process that encompasses nearly all cellular processes," said Minden.

The scientists also found that only one protein was activated at the exact moment when cells changed shape. This protein is part of a complex cellular machine called the proteosome, which is responsible for breaking down proteins.

"This finding suggests that right before cells in the ventral furrow change shape, they break down proteins, perhaps the cytoskeletal proteins that preserve their columnar shape," said Minden.

To compare the abundance and kinds of proteins made at different stages of development, Minden and his colleagues used Difference Gel Electrophoresis, a tool created by Minden and commercialized by Amersham, plc. Using DIGE, scientists label two protein samples with different color fluorescent dyes and then run both samples on the same gel, which separates proteins by size and electrical charge. A computer program analyzes the gel to detect differences in the abundance and presence of all the proteins from the two samples and reports them back to the investigator.

"Our study is really a starting point. Comparing the proteomes at different stages in an animal’s development, together with other experimental tools, can help uncover the network of functions and interactions required for a variety of developmental processes and disease states." Minden said.


The research was funded by the National Institutes of Health.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/
http://dev.biologists.org/content/vol131/issue3/

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>