Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How DNA Copying Enzyme "Stops the Presses" for Repair Synthesizing Enzyme

31.03.2004


Lorena S. Beese, Ph.D.
PHOTO CREDIT: Duke University Medical Center


Biochemists have performed detailed structural studies that reveal for the first time how an enzyme key to DNA replication stalls when an error occurs, to allow it to be corrected. Without such instantaneous braking, such mistakes in DNA replication would wreak havoc on DNA replication, killing the cell.

To their surprise, the scientists observed how the enzyme, DNA polymerase, retains a "short-term memory" of mismatches, in some cases halting itself past the point of the mismatch, so that the repair machinery can go to work. They also found that the mismatch structures differed dramatically from those deduced from previous indirect biochemical studies.

In an article in the March 19, 2004, issue of the journal Cell, Duke University Medical Center biochemists Sean Johnson and Lorena Beese, Ph.D., described how they had conducted detailed structural analyses of DNA polymerase as it encountered each of the 12 possible kinds of mismatches possible in DNA replication.



In such replication, the polymerase sequentially attaches DNA units called bases along a single-stranded template DNA. The result is like constructing one rail of a spiral staircase, using the other rail as a guide; and the polymerase "translocates" the template strand through its active site like a thread through the eye of a needle.

In this replication process, the polymerase normally guides the template strand and assembles the complementary, growing "primer" strand by pairing each base with the correct counterpart -- always pairing adenine with thymine and cytosine with guanine.

When mismatches occur, the polymerase must instantly halt itself, triggering the mismatch repair machinery to launch into action, before replication can continue. This stalling is thought to occur because the polymerase-DNA structure is distorted by the mismatched bases, causing it to shut down.

The problem, said Beese, who is an associate professor of biochemistry, is that the critical molecular details of how such distortion acted to brake the polymerase have remained unknown.

"For 40 years, there have been biochemical studies trying to understand how polymerase achieves such a high fidelity of replication," said Beese. "It was known that the polymerase stalled, but it wasn’t known why. However, these studies represent the first direct observation of the structural details of mismatches and how they interact with the polymerase. And they show why and how stalling occurs."

In their studies, Beese and graduate student Johnson used the analytical technique of X-ray crystallography. In this widely used technique, intense X-ray beams are directed through a crystal of a protein to be analyzed, and the pattern of diffractions analyzed to deduce the structure of the protein.

The first steps in their studies were to first crystallize the polymerase with a segment of DNA containing each type of mismatched pair of nucleotides. Importantly, said Beese, the loosely associated crystals were so constructed that the polymerase could actually carry out several replication steps within the crystal.

"We have been able to replicate and translocate up to six base pairs in the crystal -- to my knowledge the biggest such motion ever seen in a crystal," said Beese. Using this approach, the Duke biochemists engineered the polymerase to be error-prone, so that they could produce crystals with mispaired bases inserted in the active site.

What’s more, they were able to move the mismatch away from the active site and still detect the distortion of the polymerase structure that would indicate the polymerase was "sensing" a mismatch. Thus, the enzyme could "remember" a mismatch after it had occurred.

"What was surprising about this finding is that prior to the study a mismatch was thought to induce only very small local distortions right around the mismatch," said Beese. "But what we saw is that the polymerase amplifies this distortion back to the active site." However, cautioned, Beese, the full details of the stalling mechanism under all possible conditions remain to be worked out. So, there could be other details of the stalling mechanism that could affect understanding of this "memory," she said.

Significantly, said Beese, she and Johnson discovered that both the growing primer strand and the template are involved in the stalling process.

"Although each mismatch is different, we saw that it isn’t just on the primer side that the structure is disrupted by a mismatch, but also on the template side, and sometimes both. And we also saw a mechanism we hadn’t expected at all, which is that some mismatches just get stuck and don’t translocate."

Although Beese emphasized that their studies are quite basic, such findings could help explain how the polymerase-triggered repair system is affected by DNA damage from carcinogenic chemicals.

The next steps in their research, said Beese, will be to instantaneously capture the polymerase in the act of processing a mismatch. The researchers plan to use flashes of ultraviolet light to unleash "caged" chemicals that trigger replication -- and at the same time use flashes of X-rays to illuminate the crystal. This approach may allow the researchers to make a movie of the polymerase during the synthesis and mismatch detection process.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7499

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>