Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How DNA Copying Enzyme "Stops the Presses" for Repair Synthesizing Enzyme

31.03.2004


Lorena S. Beese, Ph.D.
PHOTO CREDIT: Duke University Medical Center


Biochemists have performed detailed structural studies that reveal for the first time how an enzyme key to DNA replication stalls when an error occurs, to allow it to be corrected. Without such instantaneous braking, such mistakes in DNA replication would wreak havoc on DNA replication, killing the cell.

To their surprise, the scientists observed how the enzyme, DNA polymerase, retains a "short-term memory" of mismatches, in some cases halting itself past the point of the mismatch, so that the repair machinery can go to work. They also found that the mismatch structures differed dramatically from those deduced from previous indirect biochemical studies.

In an article in the March 19, 2004, issue of the journal Cell, Duke University Medical Center biochemists Sean Johnson and Lorena Beese, Ph.D., described how they had conducted detailed structural analyses of DNA polymerase as it encountered each of the 12 possible kinds of mismatches possible in DNA replication.



In such replication, the polymerase sequentially attaches DNA units called bases along a single-stranded template DNA. The result is like constructing one rail of a spiral staircase, using the other rail as a guide; and the polymerase "translocates" the template strand through its active site like a thread through the eye of a needle.

In this replication process, the polymerase normally guides the template strand and assembles the complementary, growing "primer" strand by pairing each base with the correct counterpart -- always pairing adenine with thymine and cytosine with guanine.

When mismatches occur, the polymerase must instantly halt itself, triggering the mismatch repair machinery to launch into action, before replication can continue. This stalling is thought to occur because the polymerase-DNA structure is distorted by the mismatched bases, causing it to shut down.

The problem, said Beese, who is an associate professor of biochemistry, is that the critical molecular details of how such distortion acted to brake the polymerase have remained unknown.

"For 40 years, there have been biochemical studies trying to understand how polymerase achieves such a high fidelity of replication," said Beese. "It was known that the polymerase stalled, but it wasn’t known why. However, these studies represent the first direct observation of the structural details of mismatches and how they interact with the polymerase. And they show why and how stalling occurs."

In their studies, Beese and graduate student Johnson used the analytical technique of X-ray crystallography. In this widely used technique, intense X-ray beams are directed through a crystal of a protein to be analyzed, and the pattern of diffractions analyzed to deduce the structure of the protein.

The first steps in their studies were to first crystallize the polymerase with a segment of DNA containing each type of mismatched pair of nucleotides. Importantly, said Beese, the loosely associated crystals were so constructed that the polymerase could actually carry out several replication steps within the crystal.

"We have been able to replicate and translocate up to six base pairs in the crystal -- to my knowledge the biggest such motion ever seen in a crystal," said Beese. Using this approach, the Duke biochemists engineered the polymerase to be error-prone, so that they could produce crystals with mispaired bases inserted in the active site.

What’s more, they were able to move the mismatch away from the active site and still detect the distortion of the polymerase structure that would indicate the polymerase was "sensing" a mismatch. Thus, the enzyme could "remember" a mismatch after it had occurred.

"What was surprising about this finding is that prior to the study a mismatch was thought to induce only very small local distortions right around the mismatch," said Beese. "But what we saw is that the polymerase amplifies this distortion back to the active site." However, cautioned, Beese, the full details of the stalling mechanism under all possible conditions remain to be worked out. So, there could be other details of the stalling mechanism that could affect understanding of this "memory," she said.

Significantly, said Beese, she and Johnson discovered that both the growing primer strand and the template are involved in the stalling process.

"Although each mismatch is different, we saw that it isn’t just on the primer side that the structure is disrupted by a mismatch, but also on the template side, and sometimes both. And we also saw a mechanism we hadn’t expected at all, which is that some mismatches just get stuck and don’t translocate."

Although Beese emphasized that their studies are quite basic, such findings could help explain how the polymerase-triggered repair system is affected by DNA damage from carcinogenic chemicals.

The next steps in their research, said Beese, will be to instantaneously capture the polymerase in the act of processing a mismatch. The researchers plan to use flashes of ultraviolet light to unleash "caged" chemicals that trigger replication -- and at the same time use flashes of X-rays to illuminate the crystal. This approach may allow the researchers to make a movie of the polymerase during the synthesis and mismatch detection process.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7499

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>