Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning how to erase electronic paper

30.03.2004


Developing electronic paper that can be written on and then erased with the touch of a button is a challenge. Sometimes the ink must adhere to the paper and other times bead up.



Getting it just right requires knowing how, on a molecular level, the liquid ink interacts with the solid paper.

Now Jeanne E. Pemberton has clarified why changing the electrical charge on electronic paper affects how well ink will stick.


The finding will further efforts to make a reusable tablet.

"The structure of water is different depending on whether the surface is charged or not," said Pemberton, the John and Helen Schaefer professor of chemistry at the University of Arizona in Tucson. "People have predicted this change, but no one has ever fully understood its molecular basis. Now we’ve seen it. This finding will help us predict how ink will interact with electronic paper."

Pemberton is the recipient of the American Chemical Society’s 2004 Award in Analytical Chemistry. At the symposium being given in her honor at the 227th ACS National Meeting in Anaheim, Calif., she’ll discuss her finding about electronic paper and other aspects of her work on liquid-solid interfaces. Her talk, "Chemical Measurement Science at the Interface," will be given on Monday, March 29 at 1:30 p.m. in Room 207D of the Anaheim Convention Center.

Pemberton’s specialty is studying what happens at the boundary between liquids and solids, an area called interfacial chemistry. She wants to know what’s going on right at the interface, the region where the layer of liquid just six or seven molecules deep interacts with the solid surface.

Knowing more about what happens at the interface will help with a variety of problems, including making better electronic paper, controlling corrosion, or figuring out whether some toxic chemical will stick to the soil or wash into the groundwater.

But studying the molecular interactions at the liquid-solid boundary is hard because the bulk of the liquid gets in the way, Pemberton said.

"Only sampling one-to-two nanometers of stuff is hard to do. That’s been the challenge," she said, adding that a nanometer is the length of only a couple of molecules.

So she figured out a way to create just the interface, without having the rest of the liquid present. She got the idea from noticing that if a solid object is dipped into water and removed, sometimes some of the water still clings to the object.

The method she and her research team developed, known as "emersion," applies a drop of liquid onto the end of a rotating cylinder. As the cylinder rotates, the liquid is spread into a thin film only a few molecules thick. Then the scientists use light beams of different energies to determine how the atoms in the liquid molecules are vibrating. The reseachers use that information to determine how the molecules in the boundary layer are different from molecules surrounded by lots of liquid.

"There are lots of other methods to study surfaces and interfaces and none has been as successful as emersion at understanding these solid-liquid interfaces at the molecular level," she said. Her research group is currently the only one in the world using the emersion method, which was developed in her laboratory.

So far, her team has used the method to figure out how water interacts with a solid that is chemically similar to electronic paper. Such paper is composed of a tiny checkerboard of cells, each of which can be individually charged.

If the cell has no charge, the water molecules are more attracted to each other than the paper, and they bead up. If the cell has an electrical charge, individual water molecules are attracted to the paper and spread out on it rather than sticking so strongly to one another.

Her finding will help make better electronic paper, she said, because knowing how the surface charge affects the structure of ink molecules at the interface is key to figuring out how to repeatedly write on and then completely erase the paper.

Providing a better understanding of a variety of liquid-solid interfaces is the goal of Pemberton’s research.

"You can’t have control at the subtle molecular level you need to make these technologies work without understanding the chemical nature of the interface," she said. "Mostly we don’t understand that yet."

Jeanne Pemberton | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>