Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paclitaxel analog kills more cancer cells than natural product

30.03.2004


A multi-university research team led by Virginia Tech University Distinguished Professor of Chemistry David G.I. Kingston has succeeded in enhancing the structure of paclitaxel (Taxol™) to make it more effective in killing cancer cells.




Having determined how paclitaxel fits into a cancer cell’s reproductive machinery, the team is optimistic that simpler molecules can be designed as future medicines.

Kingston will present the research that brought the team to this point at the 227th Annual Meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.


Paclitaxel, a natural compound from yew trees, is a relatively scarce resource, but synthetic forms and analogs have, so far, been less effective. So scientists have continued to study how the paclitaxel molecule works in order to develop more effective products.

Kingston explains that paclitaxel binds to tubulin, a protein molecule that forms the backbone of microtubules. Microtubules are a cell component whose duties include allowing chromosomes to move into the correct position for the cell to divide into two daughter cells.

"When paclitaxel binds to tubulin, it stabilizes the microtubules and messes up the equilibrium between tubulin and microtubule," says Kingston. "A cell with stable microtubules proceeds to programmed cell death without dividing,"

How does paclitaxel bind to tubulin? There is a binding pocket in the protein into which part of the paclitaxel molecule fits. This binding pocket has been visualized by some elegant electron crystallography experiments carried out by scientists at the Lawrence Berkeley National Laboratory (Nogales et al., Cell, 1999, 96, 79). Paclitaxel consists of a rigid ring system attached to a flexible side chain, but the exact arrangement of the side chain in space is not known. Kingston explains, "The issue has been, what is the shape or orientation of the side chain when paclitaxel is sitting on the microtubule? If we could figure that out, we could design a molecule that would plug in better than paclitaxel for better binding and possibly better activity against cancer. What is the right conformation of the side chain?"

One hypothesis was put forward by Jim Snyder of Emory University. Based on a computer model of the paclitaxel binding site, he proposed a particular orientation of the side chain. Kingston, his colleagues, and Snyder then designed molecules with bridges between the ring and the side chain. "We thought that if we linked the bridge in the right position, maybe it would hold the side chain in the right place," Kingston says.

It wasn’t a new idea. Gunda Georg of the University of Kansas and Iwao Ojima of the State University of New York (SUNY) Stony Brook both made bridged paclitaxel derivatives, but these were all less effective than natural paclitaxel.

Kingston collaborated with Snyder and Susan Bane of SUNY Binghamton to design a paclitaxel analog that linked in a new way. "We synthesized a number of the compounds and refined the details of how the link is formed until, last summer, we were able to get activity as good as paclitaxel."

Presently, their best compound is about 20 times more active in one assay, or biological test measuring the analog’s ability to kill cancer cells. In another assay, the compound is one and a half times more active; and in a third assay, it is three times more deadly to cancer cells. "In measurements of interaction with tubulin, it is two to three times more active than paclitaxel," Kingston says.

The research is significant because it has validated Snyder’s model, provided a more exact picture of the shape that paclitaxel takes in order to bind to tubulin, and "it offers the exciting possibility that now that we know that shape, we can design simpler molecules with a similar shape, which is what we are doing now," Kingston says.

He will present the paper, " Taxol Pharmacophore: Experimental evidence from a highly constrained analog and REDOR NMR (MEDI 192)" at 11.30 a.m., Tuesday, March 30, in Ballroom D at the Anaheim Convention Center. Co-authors of the paper are Kingston, Research Scientist Thota Ganesh, Graduate Student Rebecca C. Guza, and laboratory technicianJennifer K. Schilling, all at Virginia Tech; Susan Bane, Natasha Shanker, and Rudravajhala Ravindra of SUNY Binghamton, James P. Snyder and Ami Lakdawala of Emory, and Lynette Cegelski, Robert D. O’Connor, and Jacob Schaefer of Washington University, Saint Louis, all with the chemistry departments of their respective institutions. The material also will be presented as a poster during the SciMix from 8 to 10 p.m., Monday, March 29.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>