Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA-binding strands used to create molecular zipper

30.03.2004


Virginia Tech students and faculty members are creating releasable coatings and thin films using the same chemistry that nature uses to bind the double helix of DNA.



They will present their research at the 227th national meeting of the American Chemical Society in Anaheim, Calif., March 28-April 1, 2004.

"We are coating a patterned surface with accepting molecules then applying donating molecules – that is, using molecular recognition -- to create a molecular zipper," explains Tim Long of Blacksburg, professor of chemistry in the College of Science at Virginia Tech.


Applications would be strong, multilayered structures that might be used for body armor, as well as for releasable coatings and films.

The researchers are using heterocycles – the same groups that bind strands of DNA. "They can be selected to recognize specific complementary groups based on the attributes desired," Long says.

The paper, "Multiple hydrogen bonding on surfaces (PMSE 135)," will be presented by Casey L. Elkins, a graduate student from Coopersville, Mich. Her co-authors are doctoral student Kalpana Viswanathan of Madras, India, Adhesive and Sealant Science Professor Thomas C. Ward of Blacksburg, Va., and Long. The presentation will be at 2:40 p.m. on Monday, March 29, at Coast Anaheim Hotel in the Park B room as part of the Division of Polymeric Materials: Science and Engineering symposium on Functional Polymer Thin Films for Switching, Sensing, and Adaptive Applications.

Elkins received her undergraduate degree from Michigan State University and Viswanathan received her master of science degree from Indian Institute of Technology, Madras.


Contact for more information
Dr. Timothy Long, telong@vt.edu or 540-231-2480
Casey Elkins, chudelso@vt.edu
Kalpana Viswanathan, kviswana@vt.edu

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>