Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioreactor boosts chemical fermentation by 50 percent: study

30.03.2004


A device invented at Ohio State University has dramatically boosted the production of a chemical that performs tasks as diverse as scenting perfume and flavoring Swiss cheese.


Shang-Tian Yang



Engineers here have used their patented fibrous-bed bioreactor to genetically alter a bacterium so that it produces 50 percent more of the chemical propionic acid than the organism produces normally. And it did so without the aid of chemical additives employed in industry.

The device also reduced the amount of two unwanted byproducts that normally result from propionic acid fermentation -- cutting one byproduct by more than half, said Shang-Tian Yang, professor of chemical engineering at Ohio State.


The bioreactor grows cells inside a bundle of fibers. Yang and his colleagues have previously shown that they could control the growth and differentiation of cells by changing the packing density of the fibers in the bioreactor.

Monday at the national meeting of the American Chemical Society in Anaheim, Yang and doctoral student Supaporn Suwannakham reported that they were able to produce 72 grams of propionic acid per liter of sugar solution inside the bioreactor. Traditional fermentation typically yields only 50 grams per liter or less, making the new process 44 percent more effective.

More important to Yang is the fact that he and his team were able to coax the bacterium P. acidipropionici to make more acid without adding chemicals to the mix. They simply immobilized the cells on the fibers so the cells could grow and evolve -- or mutate -- in a harsh environment.

“Most labs focus on mixing the right chemical or biological cocktail to grow cells,” he said. “We are the only group that I know of that is working to optimize the cells’ physical environment.”

The bioreactor can grow cells for a variety of applications including fermentation, animal cell culture, tissue engineering, and waste water treatment. Since 1998, Yang and his colleagues have used the device to make large quantities of a protein -- Developmental Endothelial Locus-1 Protein -- for cancer research. A commercial company recently licensed the technology for agricultural applications.

Yang designed the bioreactor as a three-dimensional alternative to the flat petri dishes and trays that scientists traditionally use to culture cells. The fibers anchor living cells in place as they grow and reproduce.

For this latest study, the engineers grew P. acidipropionici in a sugar solution, and gradually adjusted the sugar concentration so the cells would tolerate -- and produce -- higher concentrations of propionic acid. Tests yielded an average of 72 grams of the acid per liter. The bioreactor also produced 52 percent less succinate and 14 percent less acetate -- two chemicals that industry normally has to remove from the fermentation mix before the propionic acid can be used.

When Yang and Suwannakham examined the cells from the bioreactor, they found that the cells had mutated and changed several key enzyme activities. Production of enzymes for propionic acid formation had increased, and the enzyme for succinate production had decreased.

Aside from giving Swiss cheese its characteristic smell and flavor, propionic acid is often used as a preservative and flavor enhancer for a wide variety of cheeses and baked goods.

In the chemical industries, it’s used as an ingredient for dyes, perfumes, pharmaceuticals, herbicides, rubber, and plastic.

With today’s growing emphasis on organic or “all-natural” products, Yang sees a market for propionic acid made without chemical additives in the bioreactor. “A company could conceivably market a product as being made with ‘all-natural’ propionic acid,” he said.



Contact: Shang-Tian Yang, (614) 292-6611; Yang.15@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/propacid.htm

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>