Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioreactor boosts chemical fermentation by 50 percent: study

30.03.2004


A device invented at Ohio State University has dramatically boosted the production of a chemical that performs tasks as diverse as scenting perfume and flavoring Swiss cheese.


Shang-Tian Yang



Engineers here have used their patented fibrous-bed bioreactor to genetically alter a bacterium so that it produces 50 percent more of the chemical propionic acid than the organism produces normally. And it did so without the aid of chemical additives employed in industry.

The device also reduced the amount of two unwanted byproducts that normally result from propionic acid fermentation -- cutting one byproduct by more than half, said Shang-Tian Yang, professor of chemical engineering at Ohio State.


The bioreactor grows cells inside a bundle of fibers. Yang and his colleagues have previously shown that they could control the growth and differentiation of cells by changing the packing density of the fibers in the bioreactor.

Monday at the national meeting of the American Chemical Society in Anaheim, Yang and doctoral student Supaporn Suwannakham reported that they were able to produce 72 grams of propionic acid per liter of sugar solution inside the bioreactor. Traditional fermentation typically yields only 50 grams per liter or less, making the new process 44 percent more effective.

More important to Yang is the fact that he and his team were able to coax the bacterium P. acidipropionici to make more acid without adding chemicals to the mix. They simply immobilized the cells on the fibers so the cells could grow and evolve -- or mutate -- in a harsh environment.

“Most labs focus on mixing the right chemical or biological cocktail to grow cells,” he said. “We are the only group that I know of that is working to optimize the cells’ physical environment.”

The bioreactor can grow cells for a variety of applications including fermentation, animal cell culture, tissue engineering, and waste water treatment. Since 1998, Yang and his colleagues have used the device to make large quantities of a protein -- Developmental Endothelial Locus-1 Protein -- for cancer research. A commercial company recently licensed the technology for agricultural applications.

Yang designed the bioreactor as a three-dimensional alternative to the flat petri dishes and trays that scientists traditionally use to culture cells. The fibers anchor living cells in place as they grow and reproduce.

For this latest study, the engineers grew P. acidipropionici in a sugar solution, and gradually adjusted the sugar concentration so the cells would tolerate -- and produce -- higher concentrations of propionic acid. Tests yielded an average of 72 grams of the acid per liter. The bioreactor also produced 52 percent less succinate and 14 percent less acetate -- two chemicals that industry normally has to remove from the fermentation mix before the propionic acid can be used.

When Yang and Suwannakham examined the cells from the bioreactor, they found that the cells had mutated and changed several key enzyme activities. Production of enzymes for propionic acid formation had increased, and the enzyme for succinate production had decreased.

Aside from giving Swiss cheese its characteristic smell and flavor, propionic acid is often used as a preservative and flavor enhancer for a wide variety of cheeses and baked goods.

In the chemical industries, it’s used as an ingredient for dyes, perfumes, pharmaceuticals, herbicides, rubber, and plastic.

With today’s growing emphasis on organic or “all-natural” products, Yang sees a market for propionic acid made without chemical additives in the bioreactor. “A company could conceivably market a product as being made with ‘all-natural’ propionic acid,” he said.



Contact: Shang-Tian Yang, (614) 292-6611; Yang.15@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/propacid.htm

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>