Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on spirochetes

29.03.2004


Major differences found between genomes of oral pathogen and related spiral-shaped bacteria that cause syphilis and lyme disease



Three centuries after a pioneering Dutch microbiologist first observed the spiral-shaped oral pathogen Treponema denticola, scientists have deciphered the bacterium’s entire DNA sequence and used comparative genomics to cast new light on other spirochete microbes.

The study by scientists at The Institute for Genomic Research (TIGR) and collaborators at Baylor College of Medicine and the University of Texas Health Science Center at Houston found profound differences between the gene content of T. denticola, which is associated with periodontal (gum) disease, and of other spirochetes that cause syphilis and Lyme disease.


"This highlights the power of comparative genomics to help us understand how related pathogens can cause completely different diseases," says Ian Paulsen, who led the sequencing along with fellow TIGR researcher Rekha Seshadri. Paulsen says the T. denticola genome "provides an excellent point of reference to study the biology of spirochetes."

The paper will appear in the April 13, 2004 issue of Proceedings of the National Academy of Sciences (PNAS) and was scheduled to be published online this week. The study was supported by the National Institute of Dental and Craniofacial Research (NIDCR), which is part of the U.S. National Institutes of Health.

The researchers found that T. denticola has more than twice as many genes as the spirochete that causes syphilis, T. pallidum, and that there is virtually no conservation of gene order (synteny) between the genomes of the two related microbes. The authors say that indicates that the two spirochetes’ divergence from a common ancestor "was an ancient event" in contrast to the more recent divergence of many other groups of bacteria from their ancestral relatives.

The genome study is expected to help scientists find out more about how oral pathogens interact in dental plaque to cause gum disease. T. denticola tends to aggregate in such subgingival plaque with Porphyromonas gingivalis, a bacterium that is associated with periodontitis, a gum disease that affects an estimated 200 million Americans. Having the complete genomes of both microbes will help researches study their interactions and possibly provide molecular clues to find targets for drugs to treat gum disease.

TIGR scientists and collaborators sequenced the genome of P. gingivalis last year and are now deciphering the genomes of six other oral-cavity bacteria and conducting a "meta-genomic" assay of mouth microbes. Of the estimated 500 microbial species in the human mouth, only about 150 species have been cultured in laboratories.

"The genome sequence reveals mechanisms used by T. denticola to colonize and survive in the complex environment of oral biofilms," says Seshadri, the study’s first author. TIGR’s collaborators in the PNAS study included Steven J. Norris at the UT Health Science Center at Houston and George M. Weinstock at Baylor College of Medicine’s Department of Molecular and Human Genetics.

In the PNAS paper, researchers reported that the genome of T. denticola "reflects its adaptations for colonization and survival" with other bacteria in plaque. Compared to other spirochetes (including an estimated 60 other treponomal species or phylotypes found in dental plaque), T. denticola is relatively easy to cultivate and manipulate genetically, making it an excellent model for spirochete research.

Spirochetes are distinguished by their spiral shapes and their ability to corkscrew their way through gel-like tissues, causing a number of different diseases. The father of microbiology, Antonie van Leeuwenhoek, had first sketched an oral spirochete – later named T. denticola – after viewing it through his primitive microscope in the 1670s. Even after three centuries, however, spirochetes are poorly understood in contrast to many other major types of bacteria.

So far, TIGR has sequenced the complete genomes of three spirochetes: T. denticola; T. pallidum, which causes syphilis; and Borellia burgdorferei, which causes Lyme disease. The genome of a fourth spirochete, Leptospira interrogans, which causes the disease Leptosporisis, was sequenced at the Chinese National Human Genome Center.

TIGR’s comparative analysis found that about half of T. denticola’s 2,786 genes are not present in the other three sequenced spirochetes. The 618 genes that all four spirochetes have in common include some genes that are not found in other types of microbes whose genomes have been sequenced.

"Having the genome sequences of several spirochetes provides a remarkable opportunity to study evolution," says Norris, who says all spirochetes are cousins even though they live in a wide variety of environments, including mud, clams, termite guts, ticks, and humans. By comparing the DNA sequences of more spirochetes, he says, "we may be able to get at the root of what makes a bacterium cause disease, live free in the environment, or even be beneficial to its host."

Claire M. Fraser, president of TIGR, says the sequence data "provide a new starting point" for exploring the molecular differences that may explain why and how T. denticola and T. pallidum cause such different diseases: "This study has revealed new insights into spirochete-specific biology as well as the evolutionary forces that have shaped these genomes."


The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.

Seshadri et al. (2004). Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci. [Scheduled for print publication in issue dated April 13, 2004. Manuscript No. 2003-07639]

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>