Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking viruses may provide new way to defeat them

29.03.2004


Viruses, often able to outsmart many of the drugs designed to defeat them, may have met their match, according to new research from the University of Wisconsin-Madison.



The findings show that the introduction of a harmless molecule that uses the same machinery a virus needs to grow may be a potent way to shut down the virus before it infects other cells or becomes resistant to drugs. The results are published in the March issue of the journal, Antimicrobial Agents and Chemotherapy.

"When a virus encounters a susceptible cell, it enters and says, ’I’m now the boss,’" explains John Yin, a UW-Madison associate professor of chemical and biological engineering and senior author of the paper. "It pirates the cell’s resources to produce virus progeny that, following release from the host cell, can infect other cells."


The current technique to stop a virus in its tracks is to develop drugs that bind to and block the function of virus proteins - molecules the virus produces, with the aid of host cells that help the virus replicate, or make copies of itself. The drugs, says Yin, are like hammers that knock out key functions that the virus uses for growth and reproduction.

But, he points out, this antiviral approach cannot always outsmart the virus: "When a virus reproduces, it doesn’t do so perfectly. Sometimes, it inserts genetic typos, creating variations that may allow some versions of the virus proteins to develop an evolutionary advantage, such as drug resistance."

While improvements in molecular biology and chemistry have led to new drugs that precisely target virus proteins, they have not been able to stop viruses from producing drug-resistant strains.

"Despite advances in the development of antiviral therapies over the last decade, the emergence and outgrowth of drug-resistant virus strains remains problematic," says Hwijin Kim, a UW-Madison graduate student in the chemical and biological engineering department, and co-author of the March paper.

Given that drug-resistant virus mutants can arise, Kim and Yin wondered if there might be some antiviral strategies that are harder for a virus to beat. An unexplored approach came to mind.

Rather than designing a drug molecule that inhibits virus proteins, the UW-Madison researchers created a molecule that acts just like the parasitic virus: It enters the cell and hijacks the very machinery the virus requires for its own growth. But unlike the virus, the diversionary molecules are much smaller, meaning they can grow a lot faster and steal away even more resources from the virus. Plus, they don’t encode any virus proteins, which renders them powerless inside a cell, says Yin.

Although the diversionary molecules do need resources from the cell to work, Yin clarifies, "they essentially shut down virus growth while expending only a small fraction of the resources that the virus would normally use."

Yin and Kim analyzed the potency of this parasitic antiviral approach in computational models where E. coli had been infected with a particular virus. For the diversionary molecule, they introduced a short piece of RNA that competes for the same resources as the infectious virus to replicate. The researchers note that the models are based on experimental data and decades of biophysical and biochemical studies.

The analysis shows that when the parasitic molecule was absent, the virus had produced more than 10,000 copies of itself in less than 20 minutes after infection. In the presence of the parasitic molecule, however, no new progeny of the virus existed. The analysis, says Yin, also shows that the diversionary molecules had grown in number by more than 10,000-fold just 10 minutes after infection, further suggesting that the molecule successfully stole away resources from the virus.

"The parasitic strategy outperformed the non-parasitic strategies at all levels," says Kim. "It inhibited viral growth, even at a low dose, placed minimal demands on the intracellular resources of the host cell and was effective when introduced either before or during the infection cycle." One other important finding, he adds, is that the strategy created no obvious way for the virus to develop drug-resistant strains.

"Our calculations suggest that this antiviral strategy is a very effective approach and one that is very difficult for a virus to overcome," says Yin. "There are definite technical challenges to implementing this approach, but the findings do open the door to a broader way of thinking about antiviral strategies."

Yin says the next step is for researchers to test these ideas inside living cells.


Emily Carlson (608) 262-9772, emilycarlson@wisc.edu

Emily Carlson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>