Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odorants enhance survival of olfactory neurons

25.03.2004


A new study finds that the olfactory sensory neurons (OSNs) exhibit activity-dependent survival, a property that may be critical for an animal’s ability to maximize and retain responsiveness to crucial odorants in its environment. The research, published in the March 25 issue of Neuron, finds that a molecular signaling pathway linked to neuronal survival in the central nervous system plays a significant role in odor-induced enhancement of olfactory cell survival.



It is well known that the olfactory epithelium can adapt in the very short term to odorant stimulation by receptor desensitization and habituation. However, the ability of odorants to stimulate long-lasting changes in OSNs has been suggested but not clearly elucidated. Dr. Daniel R. Storm and colleagues from The University of Washington in Seattle developed a novel method to monitor the survival of OSNs after stimulation with odorants and to examine the signaling pathways required for cell survival. OSNs were labeled using a sophisticated noninvasive adenovirus technique. Exposure to odorants enhanced the survival of subpopulations of unperturbed neurons and neurons that were exposed to a stimulus that normally causes cell death. Further investigation revealed that the ERK/MAP kinase/CREB pathway is directly involved in odorant-stimulated rescue of OSNs.

The researchers conclude that OSNs are capable of dynamic long-term adjustment to sensory information in the environment. This is significant for animals because the persistence of odorant-detecting cells would be dictated by odorants encountered in the environment, some of which might be critical for survival. These results are also important for humans. "The identification of a chemical pathway that protects olfactory sensory neurons from cell death has important medical implications since olfactory sensory neurons die during a number of conditions including sinusitis and head injury. In addition, we lose about 1% of our sense of smell per year as we age, and olfaction loss is associated with several neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. The data in this paper suggests that drugs that activate the Erk/MAP kinase pathway may be used to protect olfactory sensory neurons from cell death associated with sinusitis, head injury, aging, and neurodegenerative diseases," explains Dr. Storm.


William C. Watt, Hitomi Sakano, Zong-Yi Lee, Jane E. Reusch, Kien Trinh and Daniel R. Storm: "Odorant Stimulation Enhances Survival of Olfactory Sensory Neurons via MAPK and CREB"


Published in Neuron, Volume 41, Number 6, 25 March 2004

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>