Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A&M researcher studying genes of mosquitoes

25.03.2004


Texas A&M University researchers are studying the genes of the mosquito species, Aedes aegypti, the carrier for both dengue and yellow fever, hoping to keep deadly mosquito-borne diseases at bay.


Dr. Patricia Pietrantonio in her laboratory where cell lines are maintained in serum and under sterile conditions in the tissue culture laboratory. Cell lines need to be split under the hood. (Texas Agricultural Experiment Station photo by Edith Chenault)



Dr. Patricia Pietrantonio, associate professor of entomology with the Texas Agricultural Experiment Station, is leading a team of researchers studying the hormone-controlled mechanism by which mosquitoes excrete waste.

"This research has far-reaching implications for the discovery of new alternatives for insect control," Pietrantonio said.


Presently, a human vaccine for yellow fever exists, but none for dengue.

The researchers are hoping the studies will reveal how the female mosquito’s system produces a diuretic response during and after a blood meal. Aedes aegypti feed during the daytime and need a blood meal to reproduce. The blood meal triggers vitellogenesis (formation of the yolk of an egg) and oogenesis (egg formation).

"They feed on humans and animals, and if the blood meal is successful, then reproduction begins," Pietrantonio said. "They can lay eggs for one to two days, and then they can feed again. The reproductive potential of the female is quite significant."

As mosquitoes feed, they begin excreting a clear liquid very quickly.

"Diuresis, or the production of urine, is very fast. If they are still engorged, they fly very poorly and susceptible to being slapped by a human or eaten by a predator," she explained.

"We want to know how the mosquito gets rid of all this water so fast. It is very complex process."

To do so, researchers are cloning mosquito genes and studying cell receptors, the proteins in the cell membranes involved in the transfer of information from one area of the cell to another. The process is regulated by hormones.

Hormones are released from the brain and nervous system, bind to the receptors and "tell these tissues" to activate a variety of proteins that ultimately cause fluid secretion.

"If we disrupt the hormonal communication, the tissues will not know what to do," she explained. In this case, an insecticide targeting the hormone receptor can be developed to disrupt the secretion of fluid.

"You can be very precise and very selective (with an insecticide like this)," she said. "One wants to be very selective in what will be killed or harmed. Not just any chemical will do, especially if you are going to put something very close to humans. It is a long-term research that has potential applications for vector-transmitted diseases for which there is no vaccine."

The first reported epidemics of dengue fever occurred in the late-1700s in Asia, Africa and North America. South Texas experienced its largest outbreak of dengue fever in nearly 20 years in October 1999, with more then 100 cases reported in Texas and Mexico.

Dengue viruses are transmitted by the mosquito during the feeding process. Dengue is very painful – patients feel as though their bones are breaking – but is rarely fatal. However, dengue hemorrhagic fever and dengue shock syndrome are often fatal.

Yellow fever symptoms are fever, chills, prostration, jaundice and in severe cases, internal hemorrhaging, coma and death. It is endemic to the tropic and subtropics, and the disease occurs in sporadic outbreaks. Immunization is an effective preventive measure, Pietrantonio said.

But, "the control of dengue is achieved by killing the vector, the mosquito," she said. "We need to know more about the weak points of the mosquito to find new ways of control."

Edith A. Chenault | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/ENTO/Mar2304a.htm

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>