Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Studies Show Feasibility of Brain-Machine Interfaces

24.03.2004


In their first human studies of the feasibility of using brain signals to operate external devices, researchers at Duke University Medical Center report that arrays of electrodes can provide useable signals for controlling such devices. The research team is now working to develop prototype devices that may enable paralyzed people to operate "neuroprosthetic" and other external devices using only their brain signals.


Dennis Turner, M.D., left, and Parag Patil, M.D.
PHOTO CREDIT: Duke University Photography



While the new studies provide an initial proof of principle that human application of brain-machine interfaces is possible, the researchers emphasize that many years of development and clinical testing will be required before such neuroprosthetic devices are available.

The research team, led by neurosurgeon and professor of neurobiology Dennis Turner, M.D., and neurobiologist Miguel Nicolelis, M.D., will publish their results in the July 2004 issue of the journal Neurosurgery. Principal members of the research team also include Parag Patil, M.D., a resident in neurosurgery and lead author of the study, and Jose Carmena, Ph.D., a post-doctoral fellow in neurobiology. The research was supported by the Defense Advanced Research Projects Agency and the National Institutes of Health.


The research builds on earlier studies in the Nicolelis laboratory, in which monkeys learned to control a robot arm using only their brain signals.

In the initial human studies, Patil and colleagues recorded electrical signals from arrays of 32 microelectrodes, during surgeries performed to relieve the symptoms of Parkinson’s disease and tremor disorders. These surgical procedures routinely involve implanting electrodes into the brain and then stimulating the brain with small electrical currents to relieve the patient’s symptoms. The patients are awake during surgery, and the neurosurgeons typically record brain signals to ensure that permanent electrodes are placed into the optimal location in the brain.

In the experiments being reported in Neurosurgery, the researchers added a simple manual task to the surgical procedure. While brain signals were recorded using the novel 32-channel electrode array, the 11 volunteer patients were asked to play a hand-controlled video game.

Subsequently analyzing the signals from these experiments, the team found that the signals contained enough information to be useful in predicting the hand motions. Such prediction is the necessary requisite for reliably using neural signals to control external devices.

"Despite the limitations on the experiments, we were surprised to find that our analytical model can predict the patients’ motions quite well," said Nicolelis. "We only had five minutes of data on each patient, during which it took a minute or two to train them to the task. This suggests that as clinical testing progresses, and we use electrode arrays that are implanted for a long period of time, we could achieve a workable control system for external devices," he said.

While other researchers have demonstrated that individually implanted electrodes can be used to control a cursor on a computer screen, complex external devices would require data from large arrays of electrodes, said the Duke researchers.

According to Nicolelis, another major difference between the initial human studies and the monkey studies is that recording in the human patients were made from electrodes inserted deeper into the brain, in subcortical structures, rather than the cortical surface.

"This shows that one can extract information not only from cortical areas, but from subcortical ones, too," said Nicolelis. "This suggests that in the future, there will be more options for sampling neuronal information to control a prosthetic device," he said.

According to Turner, the progression to human clinical studies presents a number of challenges. For example, he said, the data with monkeys were obtained from electrodes attached to the surface of the cerebral cortex.

"We initially used subcortical electrodes, because they are more stable because they are buried deeper," said Turner. Also, he said, the deeper regions present other advantages. "The way the brain works, all the signals for motor control are filtered through these deep regions of the brain before they reach the final cortical output," he said. "So, they are theoretically easier to record from than cortical areas. The subcortical areas are also denser, which means there are more cells to record from in a smaller area.

Working with Duke biomedical engineers, the research team is currently developing the initial prototype of a neuroprosthetic device that will include a wireless interface between the patient and the device.

According to Turner, while the most obvious application of such technology would be a robot arm for a quadriplegic, he and his colleagues are planning other devices as well. One would be a neurally controlled electric wheelchair, and another a neurally operated keyboard, whose output could include either text or speech. Such devices could help both paralyzed people and those who have lost speech capabilities because of stroke or amyotrophic lateral sclerosis (Lou Gehrig’s disease).

A key question in future clinical studies will be whether humans can incorporate such devices into their "schema," or neural representation of the external world, said Turner. The monkeys in Nicolelis’ studies appeared to do just that.

"We do know that for all kinds of motor training, such as riding a bicycle, people incorporate an external device into their schema, and the process becomes subconscious," he said. "We will build on that phenomenon in our human studies. It’s known, for example, that patients who don’t have use of their arm still show in MRI studies that the control centers in the brain are working normally. When they are asked to imagine moving their arm, the control centers become active. So, we have good hope that the neurons in those centers can still provide the same signals, even though the arm isn’t physically working."

As their next major step, said Turner, the researchers have already applied for federal approval to begin implanting experimental electrode arrays long-term in quadriplegic patients. Such tests, conducted over the next three to five years would involve implanting the arrays in specific regions, asking the patients to perform specific tasks and then exploring which tasks are optimally controlled by that region.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7493

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>