Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists light a path for new nerve cells

23.03.2004


Molly S. Shoichet
Associate Professor Ph.D. (University of Massachusetts)
Credits: U of Toronto


System for guiding cell migration, adhesion has biomedical and regenerative medical applications

Scientists at the University of Toronto are taking regenerative medicine to a new dimension with a process for guiding nerve cells that could someday help reconnect severed nerve endings.

Molly Shoichet, a professor of chemical engineering and applied chemistry at the Institute for Biomaterials and Biomedical Engineering (IBBME), has devised a new method that helps guide cell migration and adhesion. "We’re very interested in using this system for biomedical applications and regenerative medicine, specifically for guiding nerve cells," says Shoichet, who holds the Canada Research Chair in Tissue Engineering.



In the study, Shoichet and doctoral student Ying Luo combined a gel-like substance called agarose with compounds having "photolabile" properties that change chemically when exposed to light. When they directed laser light at the gel, its chemical composition changed, creating a "channel" through the gel. Although not a physical channel, the interaction created a "growth-friendly" chemical pathway through the agarose.

Luo then placed neural cells at the opening of the channels. She and Shoichet found that the cells migrate into and through the channels, filling the pathways rather than clinging to the periphery. "Our findings have important implications for guiding where cells go and providing a greater surface area for the neural stimuli to be transmitted," she says. Shoichet adds that it is not yet known whether this will lead to stronger signals passing through regenerated nerves.

"This is the first example of doing 3-D patterning with this type of gel material and is applicable to transparent materials," says Shoichet. While previous techniques have created three-dimensional gel structures, they involved a time-consuming layering process.

The study, which appears in the March 21 advanced online publication of the journal Nature Materials, was funded by the Natural Sciences and Engineering Research Council of Canada, an Ontario Graduate Scholarship and a Connaught Fellowship.

Nicolle Wahl | University of Toronto
Further information:
http://www.news.utoronto.ca/bin5/040323a.asp

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>