Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For some gorillas, local kin may mean local peace

23.03.2004


Scientists studying the elusive western gorilla observed that neighboring social groups have surprisingly peaceful interactions, in contrast to the aggressive male behavior well documented in mountain gorillas. By analyzing the DNA from fecal and hair samples of the western gorilla, scientists uncovered evidence that these neighboring social groups are often led by genetically related males. These findings suggest connections between genetic relationships and group interactions, parallels with human social and behavioral structures, and clues to the social world of early humans.




In the new work, reported by Brenda Bradley and colleagues at the Max Planck Institute for Evolutionary Anthropology and Stony Brook University, the researchers collected DNA samples to characterize patterns of paternity within and among western gorilla social groups. The authors found that a strong majority of silverbacks were related to other silverbacks in the area and that in almost all cases, the nest sites of related silverbacks were found near each other. It was already known that both male and female western gorillas leave their natal group once mature, but the new findings suggest that the dispersing males may remain in the vicinity of male kin, forming a so-called "dispersed male network."

These genetic results point to a social structure previously unrecognized in gorillas and may help explain other unique characteristics of the western gorilla. Recent studies have reported that western gorillas exhibit frequent and often peaceful encounters between groups, behavior that differs significantly with that of the more extensively studied mountain gorilla. In contrast, the mountain gorillas have infrequent social interactions with other groups and, when they do occur, they tend to involve aggressive male-male threat displays and female herding behavior. Moreover, multiple adult male mountain gorillas, often relatives, may remain together within a given mountain gorilla group, rather than dispersing.


The researchers theorize that the dispersed male network and the social behavior of the western gorilla may be connected, in part because peaceful interactions between related males may be beneficial. This idea is in keeping with kin-selection theory, a well-regarded set of ideas for how related members of a society interact to benefit the related group. According to the authors, western gorilla male networks may benefit younger males as they attempt to attract females and form new groups, since male-male aggression is thought to hinder the acquisition and retention of females. Similar scenarios have been reported for some bird species, and there is ample evidence of such relationships underlying aspects of human social interactions, including marriage patterns. In addition, some relevant aspects of western gorilla society are shared with chimpanzees. The new findings point to characteristics that appear to be held in common between humans and some other African apes, suggesting that kinship patterns both within and among groups may have played an important role in shaping the social world of early humans.

Brenda J. Bradley, Diane M. Doran-Sheehy, Dieter Lukas, Christophe Boesch, and Linda Vigilant: "Dispersed Male Networks in Western Gorillas"


###
Published in Current Biology, Volume 14, Number 6, 23 March 2003.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>