Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For some gorillas, local kin may mean local peace

23.03.2004


Scientists studying the elusive western gorilla observed that neighboring social groups have surprisingly peaceful interactions, in contrast to the aggressive male behavior well documented in mountain gorillas. By analyzing the DNA from fecal and hair samples of the western gorilla, scientists uncovered evidence that these neighboring social groups are often led by genetically related males. These findings suggest connections between genetic relationships and group interactions, parallels with human social and behavioral structures, and clues to the social world of early humans.




In the new work, reported by Brenda Bradley and colleagues at the Max Planck Institute for Evolutionary Anthropology and Stony Brook University, the researchers collected DNA samples to characterize patterns of paternity within and among western gorilla social groups. The authors found that a strong majority of silverbacks were related to other silverbacks in the area and that in almost all cases, the nest sites of related silverbacks were found near each other. It was already known that both male and female western gorillas leave their natal group once mature, but the new findings suggest that the dispersing males may remain in the vicinity of male kin, forming a so-called "dispersed male network."

These genetic results point to a social structure previously unrecognized in gorillas and may help explain other unique characteristics of the western gorilla. Recent studies have reported that western gorillas exhibit frequent and often peaceful encounters between groups, behavior that differs significantly with that of the more extensively studied mountain gorilla. In contrast, the mountain gorillas have infrequent social interactions with other groups and, when they do occur, they tend to involve aggressive male-male threat displays and female herding behavior. Moreover, multiple adult male mountain gorillas, often relatives, may remain together within a given mountain gorilla group, rather than dispersing.


The researchers theorize that the dispersed male network and the social behavior of the western gorilla may be connected, in part because peaceful interactions between related males may be beneficial. This idea is in keeping with kin-selection theory, a well-regarded set of ideas for how related members of a society interact to benefit the related group. According to the authors, western gorilla male networks may benefit younger males as they attempt to attract females and form new groups, since male-male aggression is thought to hinder the acquisition and retention of females. Similar scenarios have been reported for some bird species, and there is ample evidence of such relationships underlying aspects of human social interactions, including marriage patterns. In addition, some relevant aspects of western gorilla society are shared with chimpanzees. The new findings point to characteristics that appear to be held in common between humans and some other African apes, suggesting that kinship patterns both within and among groups may have played an important role in shaping the social world of early humans.

Brenda J. Bradley, Diane M. Doran-Sheehy, Dieter Lukas, Christophe Boesch, and Linda Vigilant: "Dispersed Male Networks in Western Gorillas"


###
Published in Current Biology, Volume 14, Number 6, 23 March 2003.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>