Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For some gorillas, local kin may mean local peace

23.03.2004


Scientists studying the elusive western gorilla observed that neighboring social groups have surprisingly peaceful interactions, in contrast to the aggressive male behavior well documented in mountain gorillas. By analyzing the DNA from fecal and hair samples of the western gorilla, scientists uncovered evidence that these neighboring social groups are often led by genetically related males. These findings suggest connections between genetic relationships and group interactions, parallels with human social and behavioral structures, and clues to the social world of early humans.




In the new work, reported by Brenda Bradley and colleagues at the Max Planck Institute for Evolutionary Anthropology and Stony Brook University, the researchers collected DNA samples to characterize patterns of paternity within and among western gorilla social groups. The authors found that a strong majority of silverbacks were related to other silverbacks in the area and that in almost all cases, the nest sites of related silverbacks were found near each other. It was already known that both male and female western gorillas leave their natal group once mature, but the new findings suggest that the dispersing males may remain in the vicinity of male kin, forming a so-called "dispersed male network."

These genetic results point to a social structure previously unrecognized in gorillas and may help explain other unique characteristics of the western gorilla. Recent studies have reported that western gorillas exhibit frequent and often peaceful encounters between groups, behavior that differs significantly with that of the more extensively studied mountain gorilla. In contrast, the mountain gorillas have infrequent social interactions with other groups and, when they do occur, they tend to involve aggressive male-male threat displays and female herding behavior. Moreover, multiple adult male mountain gorillas, often relatives, may remain together within a given mountain gorilla group, rather than dispersing.


The researchers theorize that the dispersed male network and the social behavior of the western gorilla may be connected, in part because peaceful interactions between related males may be beneficial. This idea is in keeping with kin-selection theory, a well-regarded set of ideas for how related members of a society interact to benefit the related group. According to the authors, western gorilla male networks may benefit younger males as they attempt to attract females and form new groups, since male-male aggression is thought to hinder the acquisition and retention of females. Similar scenarios have been reported for some bird species, and there is ample evidence of such relationships underlying aspects of human social interactions, including marriage patterns. In addition, some relevant aspects of western gorilla society are shared with chimpanzees. The new findings point to characteristics that appear to be held in common between humans and some other African apes, suggesting that kinship patterns both within and among groups may have played an important role in shaping the social world of early humans.

Brenda J. Bradley, Diane M. Doran-Sheehy, Dieter Lukas, Christophe Boesch, and Linda Vigilant: "Dispersed Male Networks in Western Gorillas"


###
Published in Current Biology, Volume 14, Number 6, 23 March 2003.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>