Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal lungs provide a signal initiating labor, UT Southwestern researchers find

23.03.2004


A protein released from the lungs of a developing mouse fetus initiates a cascade of chemical events leading to the mother’s initiation of labor, researchers at UT Southwestern Medical Center at Dallas have found.


From left, Dr. Carole Mendelson, Dr. Jennifer Condon and Dr. Pancharatnam Jeyasuria have found evidence that a substance secreted by the lungs of a developing fetus contains the key signal that initiates labor.



The research, which has implications for humans, marks the first time a link between a specific fetal lung protein and labor has been identified, said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology and senior author of the study. The paper appears in an upcoming issue of the Proceedings of the National Academy of Sciences and is currently available online.

The initiation of term labor is carefully timed to begin only after the embryo is sufficiently mature to survive outside the womb. Previous studies suggested that the signal for labor in humans may arise from the fetus, but the nature of the signal and actual mechanism was unclear, Dr. Mendelson said.


In their study, UT Southwestern researchers found evidence that a substance secreted by the lungs of a developing fetus contains the key signal that initiates labor. The substance, called surfactant, is essential for normal breathing outside the womb.

"We found that a protein within lung surfactant serves as a hormone of labor that signals to the mother’s uterus when the fetal lungs are sufficiently mature to withstand the critical transition to air breathing," Dr. Mendelson said.

"No one really understands what causes normal or preterm labor. There may be several chemical pathways that lead to labor, but we think that this surfactant protein, which is also produced by the fetal lung in humans, may be the first hormonal signal for labor," said Dr. Mendelson, who is co-director of the North Texas March of Dimes Birth Defects Center at UT Southwestern.

In humans the signaling protein, called surfactant protein A, or SP-A, also helps immune cells, called macrophages, fight off infections in the lungs of children and adults by gobbling up bacteria, viruses and fungi that infiltrate the lung airway.

"Women who go into preterm labor frequently have an infection of the membranes that surround the fetus, and the number of macrophages in the wall of the uterus increases with the initiation of preterm labor. When women go into labor at term, they also have an increase in macrophages in the uterus," Dr. Mendelson said.

This led the researchers to investigate whether there was a connection between what happens during normal labor at term and in infected mothers who go into early labor.

"This also raised the question: If bacterial infection can cause increased macrophage infiltration of the uterus in preterm labor, what is the signal for the enhanced macrophage migration to the uterus at term?" Dr. Mendelson said.

In mice, the developing fetal lung starts producing SP-A at 17 days gestation; full-term delivery occurs at 19 days. The developing human fetus starts producing SP-A in increasing amounts after 30 to 32 weeks of a 40-week normal gestation, at which time the baby’s lungs are essentially developed. As the fetus "breathes" amniotic fluid in the womb, the protein is released into the fluid.

"The SP-A protein binds to macrophages in the amniotic fluid, macrophages that come from the fetus itself," said Dr. Jennifer Condon, a postdoctoral researcher in biochemistry and the study’s lead author.

The macrophages, "activated" by the protein, make their way through the amniotic fluid to the wall of the uterus. Once embedded there, they produce a chemical that stimulates an inflammatory response in the uterus, ultimately leading to labor.

The researchers also found that injecting a pregnant mouse with SP-A before day 17 of the pregnancy caused the mouse to deliver early. Injection of pregnant mice with an antibody that blocks SP-A function caused them to deliver late.

Identifying the receptors on the macrophages to which the SP-A protein binds will be the next step, Dr. Mendelson said.

"We think that bacteria may be binding to the same receptor on the macrophages to cause preterm labor in women. The bacteria mimic the function of SP-A, initiating the chemical reactions that lead to premature labor. If we knew more about this receptor on amniotic fluid macrophages, we may be able to design therapies or inhibitors to block preterm labor," she said.


###
Other researchers participating in the study were Dr. Pancharatnam Jeyasuria, a research fellow in internal medicine and former fellow Julie Faust, now a medical student at Texas A&M University.

The research was funded in part by the National Institutes of Health and the Texas Higher Education Coordinating Board.

Amanda Siegfried | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>