Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal lungs provide a signal initiating labor, UT Southwestern researchers find

23.03.2004


A protein released from the lungs of a developing mouse fetus initiates a cascade of chemical events leading to the mother’s initiation of labor, researchers at UT Southwestern Medical Center at Dallas have found.


From left, Dr. Carole Mendelson, Dr. Jennifer Condon and Dr. Pancharatnam Jeyasuria have found evidence that a substance secreted by the lungs of a developing fetus contains the key signal that initiates labor.



The research, which has implications for humans, marks the first time a link between a specific fetal lung protein and labor has been identified, said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology and senior author of the study. The paper appears in an upcoming issue of the Proceedings of the National Academy of Sciences and is currently available online.

The initiation of term labor is carefully timed to begin only after the embryo is sufficiently mature to survive outside the womb. Previous studies suggested that the signal for labor in humans may arise from the fetus, but the nature of the signal and actual mechanism was unclear, Dr. Mendelson said.


In their study, UT Southwestern researchers found evidence that a substance secreted by the lungs of a developing fetus contains the key signal that initiates labor. The substance, called surfactant, is essential for normal breathing outside the womb.

"We found that a protein within lung surfactant serves as a hormone of labor that signals to the mother’s uterus when the fetal lungs are sufficiently mature to withstand the critical transition to air breathing," Dr. Mendelson said.

"No one really understands what causes normal or preterm labor. There may be several chemical pathways that lead to labor, but we think that this surfactant protein, which is also produced by the fetal lung in humans, may be the first hormonal signal for labor," said Dr. Mendelson, who is co-director of the North Texas March of Dimes Birth Defects Center at UT Southwestern.

In humans the signaling protein, called surfactant protein A, or SP-A, also helps immune cells, called macrophages, fight off infections in the lungs of children and adults by gobbling up bacteria, viruses and fungi that infiltrate the lung airway.

"Women who go into preterm labor frequently have an infection of the membranes that surround the fetus, and the number of macrophages in the wall of the uterus increases with the initiation of preterm labor. When women go into labor at term, they also have an increase in macrophages in the uterus," Dr. Mendelson said.

This led the researchers to investigate whether there was a connection between what happens during normal labor at term and in infected mothers who go into early labor.

"This also raised the question: If bacterial infection can cause increased macrophage infiltration of the uterus in preterm labor, what is the signal for the enhanced macrophage migration to the uterus at term?" Dr. Mendelson said.

In mice, the developing fetal lung starts producing SP-A at 17 days gestation; full-term delivery occurs at 19 days. The developing human fetus starts producing SP-A in increasing amounts after 30 to 32 weeks of a 40-week normal gestation, at which time the baby’s lungs are essentially developed. As the fetus "breathes" amniotic fluid in the womb, the protein is released into the fluid.

"The SP-A protein binds to macrophages in the amniotic fluid, macrophages that come from the fetus itself," said Dr. Jennifer Condon, a postdoctoral researcher in biochemistry and the study’s lead author.

The macrophages, "activated" by the protein, make their way through the amniotic fluid to the wall of the uterus. Once embedded there, they produce a chemical that stimulates an inflammatory response in the uterus, ultimately leading to labor.

The researchers also found that injecting a pregnant mouse with SP-A before day 17 of the pregnancy caused the mouse to deliver early. Injection of pregnant mice with an antibody that blocks SP-A function caused them to deliver late.

Identifying the receptors on the macrophages to which the SP-A protein binds will be the next step, Dr. Mendelson said.

"We think that bacteria may be binding to the same receptor on the macrophages to cause preterm labor in women. The bacteria mimic the function of SP-A, initiating the chemical reactions that lead to premature labor. If we knew more about this receptor on amniotic fluid macrophages, we may be able to design therapies or inhibitors to block preterm labor," she said.


###
Other researchers participating in the study were Dr. Pancharatnam Jeyasuria, a research fellow in internal medicine and former fellow Julie Faust, now a medical student at Texas A&M University.

The research was funded in part by the National Institutes of Health and the Texas Higher Education Coordinating Board.

Amanda Siegfried | EurekAlert!
Further information:
http://www.swmed.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>