Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-species comparison reveals shared features between tumorigenesis and organogenesis

22.03.2004


A new study, published in the March 15th issue of Genes & Development, provides critical new insight into the shared mechanisms of normal organ development and solid tumor formation.



By studying the cerebellum (the structure in the brain largely responsible for coordinating motor activities) Drs. Alvin Kho, Isaac Kohane, David Rowitch, and colleagues at The Children’s Hospital and Dana-Farber Cancer Institute in Boston have developed a novel method for comparing the genetic changes associated with normal development in mice with that of the most common malignancy of the pediatric nervous system, medulloblastoma.

"With information derived from the Human Genome Project we now have the ability to easily compare and identify meaningful patterns of gene expression between species such as mouse and human," said Kho, a postdoctoral fellow and the paper’s lead author. Such cross-species comparison provides a powerful new tool for understanding the genetic changes associated with human tumor development.


In a developing organ, the pattern of gene expression changes as the individual cells commit to their own specialized functions. By analyzing the changing patterns of expression of more than 2000 genes in the developing cerebellum in mice and comparing these to genes expressed in human medulloblastomas, the investigators were able to characterize the malignant cells from a developmental perspective.

The researchers found that different types of medulloblastomas share many common features with cerebellar cells at the very earliest stages of their development, further emphasizing that malignant cells have disrupted developmental programs. "These findings have exploited our ability to analyze thousands of independently segregating genetic markers to confirm the classic proposals by investigators such as Lobstein and Cohnheim in the 19th century that tumorigenesis recapitulates aspects of development," Rowitch said.

Kohane and Rowitch’s research is important for two reasons. Firstly, this novel method provides a generalizable framework within which gene expression in development and tumorigenesis can be studied. By this means, the role of a particular gene in tumor progression can be better understood. And secondly, since this analysis is readily applicable to other tumor types it can be developed as a useful tool for both tumor diagnosis and prognosis.

Indeed, the investigators show that similar findings are obtained when a human squamous cell lung cancer is compared with the developing rodent lung. "Much work remains to be done to determine whether the ’developmental perspective’ can lead to clinically meaningful insights such as advances in diagnosis or our understanding of tumor behavior," Kohane said. "This study provides a foundation to ask these questions and facilitate translation of a large basic science knowledge base into the clinical sphere."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>