Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-species comparison reveals shared features between tumorigenesis and organogenesis

22.03.2004


A new study, published in the March 15th issue of Genes & Development, provides critical new insight into the shared mechanisms of normal organ development and solid tumor formation.



By studying the cerebellum (the structure in the brain largely responsible for coordinating motor activities) Drs. Alvin Kho, Isaac Kohane, David Rowitch, and colleagues at The Children’s Hospital and Dana-Farber Cancer Institute in Boston have developed a novel method for comparing the genetic changes associated with normal development in mice with that of the most common malignancy of the pediatric nervous system, medulloblastoma.

"With information derived from the Human Genome Project we now have the ability to easily compare and identify meaningful patterns of gene expression between species such as mouse and human," said Kho, a postdoctoral fellow and the paper’s lead author. Such cross-species comparison provides a powerful new tool for understanding the genetic changes associated with human tumor development.


In a developing organ, the pattern of gene expression changes as the individual cells commit to their own specialized functions. By analyzing the changing patterns of expression of more than 2000 genes in the developing cerebellum in mice and comparing these to genes expressed in human medulloblastomas, the investigators were able to characterize the malignant cells from a developmental perspective.

The researchers found that different types of medulloblastomas share many common features with cerebellar cells at the very earliest stages of their development, further emphasizing that malignant cells have disrupted developmental programs. "These findings have exploited our ability to analyze thousands of independently segregating genetic markers to confirm the classic proposals by investigators such as Lobstein and Cohnheim in the 19th century that tumorigenesis recapitulates aspects of development," Rowitch said.

Kohane and Rowitch’s research is important for two reasons. Firstly, this novel method provides a generalizable framework within which gene expression in development and tumorigenesis can be studied. By this means, the role of a particular gene in tumor progression can be better understood. And secondly, since this analysis is readily applicable to other tumor types it can be developed as a useful tool for both tumor diagnosis and prognosis.

Indeed, the investigators show that similar findings are obtained when a human squamous cell lung cancer is compared with the developing rodent lung. "Much work remains to be done to determine whether the ’developmental perspective’ can lead to clinically meaningful insights such as advances in diagnosis or our understanding of tumor behavior," Kohane said. "This study provides a foundation to ask these questions and facilitate translation of a large basic science knowledge base into the clinical sphere."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>