Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude shows how disorderliness in some proteins lets them interact with a diversity of molecules

22.03.2004


Discovery of the sequence of events in the binding of p27 to a protein complex is a model for explaining how 30 to 40 percent of the body’s proteins exploit their flexibility in order to do different tasks in the cell



Investigators at St. Jude Children’s Research Hospital have demonstrated for the first time that--contrary to the long-held belief among scientists that proteins must maintain a rigid structure in order to perform an assigned task--many proteins actually exploit disorderliness in their structure to perform a variety of different jobs. The findings of this research appear in the current, online issue of Nature Structural and Molecular Biology.

The St. Jude finding explains how many of the body’s proteins can adapt their structures to the needs of the moment, binding to different molecules depending on the job at hand.


"The potential importance of disorder in the function of some proteins has been discussed by researchers for several years," said Richard W. Kriwacki, PhD, associate member of the St. Jude Department of Structural Biology and senior author of the report. "But until now no one had actually demonstrated how such flexibility allows a protein to interact with different molecules. We’ve taken a big step in understanding the subtle details of a critical biochemical process in the life of the cell."

Previously, other researchers suggested that 30 to 40 percent of the body’s proteins do not rely on a rigid structure to interact with target molecules. In the current study, the St. Jude team verified that idea by showing how a protein called p27 uses two flexible arms to help it bind to a protein complex called Cdk2-cyclin A. This interaction is important because Cdk2-cyclin A is one of the so-called "master timekeepers" of cell division. These timekeepers trigger sequential events leading to the production of new daughter cells. By binding to Cdk2-cyclin A and blocking its activity, p27 disrupts this sequence and prevents the cell from dividing. The importance of p27’s role in regulating cell division is highlighted by findings showing that loss of p27 function is a key contributing factor in several types of cancer.

The researchers demonstrated that the p27 protein resembles a relatively rigid helical (twisted) rod with a wobbly piece of spaghetti hanging off each end. One of the wobbly arms binds to cyclin A, while the other arm binds to Cdk2.

When p27 is by itself in a solution, the arms are loose and disordered. But when p27 encounters Cdk2-cyclin A, one of its arms binds to cyclin A by folding into a rigid shape. After the first arm binds, the center rod settles across the entire Cdk2-cyclin A complex. Finally, the second arm also folds into a rigid shape onto the Cdk2 part of the complex. In this way, proteins such as p27 act as molecular ’staples’ that fasten onto their targets.

"The very act of binding to the Cdk2-cyclin A complex makes the loose, disordered arms of p27 fold up and become rigid," Kriwacki said.

The researchers also discovered how proteins like p27 can identify and bind to complexes with different types of Cdk and cyclin, such as Cdk4-cyclin D--an ability that is critical for them to correctly identify which complexes they are supposed to regulate.

"We discovered that all Cdk molecules look pretty much alike to p27," Kriwacki said. "But a certain part of each type of cyclin is unique. The first flexible arm of p27 recognizes only certain types of cyclin, based on that unique part of the molecule. The first arm binds to this part of the cyclin, and the rest of the p27 follows along."

Using nuclear magnetic resonance spectrometry, which combines radio wave emissions and a powerful magnetic field to determine the structure of proteins suspended in solutions, the team determined the shape of p27 when it was unbound. In order to study the interaction between p27 and Cdk2-cyclin A, researchers in the St. Jude Hartwell Center for Bioinformatics and Biotechnology used a technique called surface plasma resonance. This technique measures the changes in the reflection of light off p27 before and after it binds to Cdk2-cyclin A.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/
http://www.stjuderesearch.org/data/kriwackilab/p27movie.mpg

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>