Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


St. Jude shows how disorderliness in some proteins lets them interact with a diversity of molecules


Discovery of the sequence of events in the binding of p27 to a protein complex is a model for explaining how 30 to 40 percent of the body’s proteins exploit their flexibility in order to do different tasks in the cell

Investigators at St. Jude Children’s Research Hospital have demonstrated for the first time that--contrary to the long-held belief among scientists that proteins must maintain a rigid structure in order to perform an assigned task--many proteins actually exploit disorderliness in their structure to perform a variety of different jobs. The findings of this research appear in the current, online issue of Nature Structural and Molecular Biology.

The St. Jude finding explains how many of the body’s proteins can adapt their structures to the needs of the moment, binding to different molecules depending on the job at hand.

"The potential importance of disorder in the function of some proteins has been discussed by researchers for several years," said Richard W. Kriwacki, PhD, associate member of the St. Jude Department of Structural Biology and senior author of the report. "But until now no one had actually demonstrated how such flexibility allows a protein to interact with different molecules. We’ve taken a big step in understanding the subtle details of a critical biochemical process in the life of the cell."

Previously, other researchers suggested that 30 to 40 percent of the body’s proteins do not rely on a rigid structure to interact with target molecules. In the current study, the St. Jude team verified that idea by showing how a protein called p27 uses two flexible arms to help it bind to a protein complex called Cdk2-cyclin A. This interaction is important because Cdk2-cyclin A is one of the so-called "master timekeepers" of cell division. These timekeepers trigger sequential events leading to the production of new daughter cells. By binding to Cdk2-cyclin A and blocking its activity, p27 disrupts this sequence and prevents the cell from dividing. The importance of p27’s role in regulating cell division is highlighted by findings showing that loss of p27 function is a key contributing factor in several types of cancer.

The researchers demonstrated that the p27 protein resembles a relatively rigid helical (twisted) rod with a wobbly piece of spaghetti hanging off each end. One of the wobbly arms binds to cyclin A, while the other arm binds to Cdk2.

When p27 is by itself in a solution, the arms are loose and disordered. But when p27 encounters Cdk2-cyclin A, one of its arms binds to cyclin A by folding into a rigid shape. After the first arm binds, the center rod settles across the entire Cdk2-cyclin A complex. Finally, the second arm also folds into a rigid shape onto the Cdk2 part of the complex. In this way, proteins such as p27 act as molecular ’staples’ that fasten onto their targets.

"The very act of binding to the Cdk2-cyclin A complex makes the loose, disordered arms of p27 fold up and become rigid," Kriwacki said.

The researchers also discovered how proteins like p27 can identify and bind to complexes with different types of Cdk and cyclin, such as Cdk4-cyclin D--an ability that is critical for them to correctly identify which complexes they are supposed to regulate.

"We discovered that all Cdk molecules look pretty much alike to p27," Kriwacki said. "But a certain part of each type of cyclin is unique. The first flexible arm of p27 recognizes only certain types of cyclin, based on that unique part of the molecule. The first arm binds to this part of the cyclin, and the rest of the p27 follows along."

Using nuclear magnetic resonance spectrometry, which combines radio wave emissions and a powerful magnetic field to determine the structure of proteins suspended in solutions, the team determined the shape of p27 when it was unbound. In order to study the interaction between p27 and Cdk2-cyclin A, researchers in the St. Jude Hartwell Center for Bioinformatics and Biotechnology used a technique called surface plasma resonance. This technique measures the changes in the reflection of light off p27 before and after it binds to Cdk2-cyclin A.

Bonnie Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>