Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify the pattern of gene-expression changes for tuberculosis in a living host

22.03.2004


Researchers at the Center for Biomedical Inventions at UT Southwestern Medical Center at Dallas have identified the genetic changes that Mycobacterium tuberculosis, the bacterium that causes tuberculosis, undergoes during infection of a living host.

For the first time, researchers have adapted gene-chip technology to carry out genomic analysis of gene expression during the course of infection not only for M. tuberculosis, but for any pathogen. The findings will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and are currently available online.

To analyze multiple questions about the pathogenesis of tuberculosis, the researchers used gene chips, which allowed them to assess the pattern in which bacterial genes are expressed during the course of infection. This work demanded two years of technology development to establish a protocol that allowed high-throughput analysis of genes that were expressed in a pathogen that was extracted from an infected animal, rather than simply grown in culture.



"This is an example of how the high-throughput system is a new avenue to study a variety of pathogens and how they affect living hosts," said Dr. Stephen Albert Johnston, director of the CBI and one of the senior authors of the study. "We see it as a tool for vaccine and drug development against disease and the threat of biological weapons."

In the PNAS paper, researchers discuss how the tuberculosis bacterium had previously undergone genetic analysis based only on lab tests outside of a living organism. Once the entire genome of M. tuberculosis was sequenced, Drs. Johnston and Adel Talaat, then a postdoctoral researcher at UT Southwestern, began using high-speed microarray techniques, or gene-chip technology, to analyze the bacterium’s gene expression at different stages of infection in mice.

Since other pathogens have been sequenced, Dr. Johnston and coworkers are now genetically analyzing anthrax and plague infection in in vivo animal models, gaining more insight into how the potential bioweapons might behave in humans. The genetic analysis also could be applied to previously unknown diseases, like SARS.

"By identifying the genes that cause disease progression in vivo, we can begin to piece together the knowledge that will allow us to discover better targets for drug therapies," said Dr. Johnston.

To study tuberculosis – it annually kills about 2 million people around the world – researchers analyzed the bacterium’s gene activity in healthy mice, in mice with compromised immune systems, and in lab cultures. They looked at which genes were active and at what stages of the infection, from the first day to several weeks after exposure.

They discovered that a specific set of tuberculosis genes was activated only in healthy mice 21 days after the initial infection, a critical time in the progression of the disease in humans and other animals. This indicates that these genes are activated to help the pathogen survive within the host.

"We found that some genes are turned down so they stay below the immune system’s radar," said Dr. Johnston, professor of microbiology. "The bug (tuberculosis) acts in a stealthy way, hoping not to become a target of the host’s immune system but needing to stay just active enough to continue surviving."

Some genes were expressed only if the pathogen was active in an animal model. Infection in lab cultures – previously the only way that tuberculosis has been studied at the genetic level – did not express the same genetic responses in the tuberculosis pathogen. The new findings indicate that infectious diseases need to be studied in live animals models if meaningful results are to be attained.

"Understanding bacterial gene expression in vivo is central to our understanding of how bacteria colonize, invade and interact with or disrupt the normal host-cell functions and eventually produce disease," the researchers write.


###
The study was funded by the National Institutes of Health and Defense Advanced Research Projects Agency. This work was carried out in collaboration with the Animal Model Development Center at the University of New Mexico Health Science Center.

Steve O’Brien | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>