Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism Leading to Life-Threatening Infection Identified by UCSD School of Medicine Researchers

18.03.2004


The mechanism used by the bacteria that cause anthrax, bubonic plague and typhoid fever to avoid detection and destruction by the body’s normal immune response – leading to life-threatening bacterial infections – has been identified by researchers at the University of California, San Diego (UCSD) School of Medicine.



Published in the March 18, 2004 issue of the journal Nature, the lab-culture research with mouse cells identifies a protein kinase called PKR that causes the death of macrophages, the large white blood cells that act as the body’s first defense against pathogens. Without macrophages to detect, engulf and stop the invading bacteria, the infection goes unnoticed by the immune system and spreads.

“If we are able to develop specific inhibitors for PKR, and the drug industry can easily produce them, we may be able to control these nasty infections,” said the study’s senior author, Michael Karin, Ph.D., UCSD professor of pharmacology and an American Cancer Society Research Professor.


“In addition, these findings may be applicable to serious cases of the flu, where individuals also get bacterial super-infections,” Karin noted. “Every year, you have tens of thousands of deaths among people infected with the flu. We believe this super-lethal type of flu is not due to the virus alone, but to a bacterial super-infection that follows the viral infection, and because of that, can lead to macrophage death.”

In the UCSD study, the researchers focused on macrophages, which act like a security force traveling throughout the body, looking for invaders. The macrophages have a receptor on their cell surface, called a Toll-Like Receptor 4 (TLR4), that alerts them to the invading pathogen by placing the macrophage in an activated state, ready to do combat. In addition to their importance in the direct killing of bacterial pathogens, macrophages alert other components of the immune system to the presence of an infection and secrete proteins that recruit other types of white blood cells to join the fight against the bacterial invaders.

Three different pathogens were used to activate TLR4 on the surface of macrophages: Bacillus anthracis, which causes anthrax; Yersiniae pseudotuberculosis, a less virulent substitute for Yersiniae pestis, the causative agent of bubonic plague; and Salmonella typhimurium, a similar substitute for Salmonella typhi, which causes typhoid fever. Both Yersiniae pestis and Salmonella typhi are too virulent to use in most laboratories.

TLR4 activation normally results in signals for both survival and death of macrophages, with the survival signal almost always dominating. However, virulence factors produced by the B. anthracis, Yersiniae and Salmonella bacteria caused TLR4 to generate only the macrophage death signal.

“Instead of the macrophage being able to swallow the bacteria and recruit other white blood cells to the battle, it kills itself in a process called apoptosis,” Karin said.

To find out why the toxin-TLR4 combination elicited a death signal, the Karin team used further lab tests to determine the molecular components involved in the pathogen-activated TLR4 death signal. One of these was the dsRNA responsive kinase PKR. In subsequent experiments in mice bred with and without PKR, the team found that those without PKR retained healthy macrophages that are resistant to killing by the B. anthracis, Yersiniae and Salmonella bacteria, and could prevent bacterial infection.

In preliminary studies not yet published, the Karin team activated PKR first with a viral nucleic acid and then with bacteria. The result was an especially vigorous infection.

“This suggests that some people who have the flu and then get a secondary bacterial infection, are probably more prone to a life-threatening infection due to the bacteria acting together with the virus to kill macrophages through PKR,” Karin said.

In addition to Karin, the study was conducted by the paper’s first author, Li-Chung Hsu, Ph.D., and by Jin Mo Park, Ph.D., Jun-Li Luo, Ph.D., and Shin Maeda, M.D., Ph.D., UCSD Laboratory of Gene Regulation and Signal Transduction, UCSD Department of Pharmacology; Lars Eckmann, M.D. and Donald G. Guiney, M.D., UCSD Department of Medicine; and Kezhong Zhang, Ph.D. and Randel J. Kaufman, Ph.D., Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor.

The study was supported by grants from the National Institutes of Health.

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2004/03_17_Karin.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>