Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments Establish "Protein-Only" Nature of Prion Infections

18.03.2004


Two independent research groups have established conclusively that prions are proteins, and that they do not depend on genes or other factors for transmission of their traits. According to the scientists, the studies answer a nagging question that had raised doubts among some researchers about the validity of the so-called “protein-only” hypothesis of prion infectivity.



Scientists have grappled for years with one of the central tenets of the protein-only hypothesis, namely, that a single prion protein, when unaltered by genetic mutation, can give rise to different strains of prions with varying infectivity and other properties. The two research groups established that the strains could be accounted for by different misfolded conformations of the same protein. The researchers say this finding could contribute to better understanding of the functioning of disease-causing prions in animals and humans.

Both groups published their findings in the March 18, 2004, issue of the journal Nature. Howard Hughes Medical Institute investigator Jonathan S. Weissman at the University of California at San Francisco led one group. The other effort was led by Chi-Yen King at Florida State University.


Both groups worked with yeast prions, which are similar to the mammalian prions known to cause fatal brain-destroying human diseases such as Creutzfeldt-Jakob disease and kuru, and the animal diseases bovine spongiform encephalopathy (“mad cow disease”) and scrapie.

Scientists theorize that both yeast and mammalian prions transmit their characteristics via protein-protein interactions, in which an abnormally folded prion influences its normal counterpart to assume an irregular conformation.

In mammalian prion infections, abnormal, insoluble shapes trigger protein clumping that can kill brain cells. In yeast cells, the insoluble prion protein is not deadly; it merely alters a cell’s metabolism.

Both the mammalian and yeast prions adopt similar infectious conformations characterized by a high content of beta-sheet structures. These beta-sheet-rich aggregates, commonly referred to as amyloid, are also associated with a number of noninfectious neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. In both yeast and mammalian prions, the generation of different strains can sometimes enable prions to jump the “species barrier” — to infect a species other than the one originally infected.

While considerable research had indicated that amyloids were a key component of prions, many researchers had suggested that other components, including perhaps RNAs, might underlie the differences in the various prion strains.

“I would say this puts to rest any question about whether the protein-only prion hypothesis as a general principle is true,” said Weissman of his group’s findings. “And it also establishes that prion strains can be accounted for solely by the ability of the protein to misfold into more than one conformation. There might be other factors that influence it in mammalian prions, but at this point people have to prove that there are; there is no reason to suspect that there need be.”

The researchers from Florida State conducted experiments demonstrating that different strains of yeast prions can transmit their strain-specific characteristics simply through “seeding” by a prion protein.

“What we were looking for was a smoking gun,” Weissman said of the experiments in his laboratory. “We wanted to be able to take one protein, misfold it into two different self-propagating infectious conformations and show that you get two different strains, with no possibility of there being another molecule there at all.”

To do so, the lead author, Motomasa Tanaka, developed a technique to generate specific strains of yeast prion proteins simply by varying the temperature at which the newly produced proteins folded into their infective shapes.

“The use of temperature to influence folding was an elegant approach, because once you’ve changed the temperature, it leaves no trace in the solution,” said Weissman. “There are no other molecules that it might be argued are contributing to the differences.”

In test tube experiments, the researchers demonstrated that the protein conformations produced at different temperatures propagated themselves as distinct strains — providing templates for the folding of other proteins into the same shapes. Further structural analyses of two of the strains confirmed that the proteins were, indeed, folded differently.

When the researchers introduced the differently folded proteins into yeast cells, they found that inside cells, these proteins did indeed produce different prion strains that passed their properties from generation to generation. Finally, they showed that extracting prion protein from subsequent generations of yeast cells yielded protein with the same properties as the strain with which the cells had originally been infected.

Weissman said that the ability to generate, manipulate and study distinct prion strains in yeast should lead to more detailed studies of how amyloid proteins form and propagate, which will be useful in guiding future studies of strain properties of the disease-causing mammalian prions.

“Clearly, it’s technically much harder to work with mammalian prions, in large part because they are dangerous and because they take much more time to cause the disease,” said Weissman. “Nonetheless, I think some of what we are learning about how to make proteins misfold into different conformations will be directly relevant to understanding mammalian prions, and perhaps even to trying to understand the strain phenomenon in mammalian prions. This includes how strains can affect the virulence of a disease or how likely it is to jump a species.”

Jim Keeley | HHMI

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>