Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Adaptive regulatory T cells suppress killing of persistently infected cells


Scientists report that they have identified a cellular mechanism that prevents the immune system from destroying chronic, incurable viral infections such as herpes, hepatitis and human immunodeficiency virus (HIV). The research, published in the March issue of Immunity, explains why critical immune cells fail to act against the viral infection and demonstrates a successful intervention that facilitates elimination of the virus. The results open up exciting new avenues for design of future antiviral therapeutics.

Many human viruses are able to evade the immune system during acute infection and establish long-term persistent infections that are extremely difficult to eliminate. Most of the time, proliferation of the virus is balanced by antiviral immunity and the host experiences little to no damage. However, persistent infections with viruses such as HIV or hepatitis lead to life threatening diseases that currently have no cure.

Immune cells called CD8+ T cells are critical for recovery from viral infections and persistent viral infections are associated with a malfunction of these cells that is not well understood. Dr. Kim J. Hasenkrug from the Rocky Mountain Laboratories, part of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, and colleagues investigated persistent infection of mice with Friend virus (FV) to look at the specific mechanisms that contribute to CD8+ T cell dysfunction. The researchers found that although the CD8+ T cells could recognize their appropriate targets they could not destroy them. The key finding was that regulatory CD4+ T cells suppress the normal function of the CD8+ T cells in the persistently infected mice. Importantly, suppressing the activity of the regulatory CD4+ cells could prevent dysfunction of CD8+ T cells.

The researchers conclude that CD4+ T cells contribute to viral persistence by suppressing the host CD8+ T cell response and that influencing the activity of CD4+ T cells can reduce this suppression. "A practical intervention that could reduce virus loads during chronic HIV infection would likely be an invaluable tool in postponing the onset of AIDS. While it remains to be seen whether an intervention such as described in our study would work in HIV infections, our experiments open new possibilities of therapy for treating persistence, one of the most refractory elements of retroviral infections," explains Dr.Hasenkrug.

Ulf Dittmer, Hong He, Ronald J. Messer, Simone Schimmer, Anke R.M. Olbrich, Claes Ohlen, Philip D. Greenberg, Ingunn M. Stromnes, Michihiro Iwashiro, Shimon Sakaguchi, Leonard H. Evans, Karin E. Peterson, Guojun Yang, and Kim J. Hasenkrug: "Functional Impairment of CD8+ T Cells by Regulatory T Cells during Persistent Retroviral Infection"

Published in Immunity, Volume 20, Number 3, March 2004, pages 293-304.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>