Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptive regulatory T cells suppress killing of persistently infected cells

17.03.2004


Scientists report that they have identified a cellular mechanism that prevents the immune system from destroying chronic, incurable viral infections such as herpes, hepatitis and human immunodeficiency virus (HIV). The research, published in the March issue of Immunity, explains why critical immune cells fail to act against the viral infection and demonstrates a successful intervention that facilitates elimination of the virus. The results open up exciting new avenues for design of future antiviral therapeutics.



Many human viruses are able to evade the immune system during acute infection and establish long-term persistent infections that are extremely difficult to eliminate. Most of the time, proliferation of the virus is balanced by antiviral immunity and the host experiences little to no damage. However, persistent infections with viruses such as HIV or hepatitis lead to life threatening diseases that currently have no cure.

Immune cells called CD8+ T cells are critical for recovery from viral infections and persistent viral infections are associated with a malfunction of these cells that is not well understood. Dr. Kim J. Hasenkrug from the Rocky Mountain Laboratories, part of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, and colleagues investigated persistent infection of mice with Friend virus (FV) to look at the specific mechanisms that contribute to CD8+ T cell dysfunction. The researchers found that although the CD8+ T cells could recognize their appropriate targets they could not destroy them. The key finding was that regulatory CD4+ T cells suppress the normal function of the CD8+ T cells in the persistently infected mice. Importantly, suppressing the activity of the regulatory CD4+ cells could prevent dysfunction of CD8+ T cells.


The researchers conclude that CD4+ T cells contribute to viral persistence by suppressing the host CD8+ T cell response and that influencing the activity of CD4+ T cells can reduce this suppression. "A practical intervention that could reduce virus loads during chronic HIV infection would likely be an invaluable tool in postponing the onset of AIDS. While it remains to be seen whether an intervention such as described in our study would work in HIV infections, our experiments open new possibilities of therapy for treating persistence, one of the most refractory elements of retroviral infections," explains Dr.Hasenkrug.

Ulf Dittmer, Hong He, Ronald J. Messer, Simone Schimmer, Anke R.M. Olbrich, Claes Ohlen, Philip D. Greenberg, Ingunn M. Stromnes, Michihiro Iwashiro, Shimon Sakaguchi, Leonard H. Evans, Karin E. Peterson, Guojun Yang, and Kim J. Hasenkrug: "Functional Impairment of CD8+ T Cells by Regulatory T Cells during Persistent Retroviral Infection"

Published in Immunity, Volume 20, Number 3, March 2004, pages 293-304.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>