Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptive regulatory T cells suppress killing of persistently infected cells

17.03.2004


Scientists report that they have identified a cellular mechanism that prevents the immune system from destroying chronic, incurable viral infections such as herpes, hepatitis and human immunodeficiency virus (HIV). The research, published in the March issue of Immunity, explains why critical immune cells fail to act against the viral infection and demonstrates a successful intervention that facilitates elimination of the virus. The results open up exciting new avenues for design of future antiviral therapeutics.



Many human viruses are able to evade the immune system during acute infection and establish long-term persistent infections that are extremely difficult to eliminate. Most of the time, proliferation of the virus is balanced by antiviral immunity and the host experiences little to no damage. However, persistent infections with viruses such as HIV or hepatitis lead to life threatening diseases that currently have no cure.

Immune cells called CD8+ T cells are critical for recovery from viral infections and persistent viral infections are associated with a malfunction of these cells that is not well understood. Dr. Kim J. Hasenkrug from the Rocky Mountain Laboratories, part of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, and colleagues investigated persistent infection of mice with Friend virus (FV) to look at the specific mechanisms that contribute to CD8+ T cell dysfunction. The researchers found that although the CD8+ T cells could recognize their appropriate targets they could not destroy them. The key finding was that regulatory CD4+ T cells suppress the normal function of the CD8+ T cells in the persistently infected mice. Importantly, suppressing the activity of the regulatory CD4+ cells could prevent dysfunction of CD8+ T cells.


The researchers conclude that CD4+ T cells contribute to viral persistence by suppressing the host CD8+ T cell response and that influencing the activity of CD4+ T cells can reduce this suppression. "A practical intervention that could reduce virus loads during chronic HIV infection would likely be an invaluable tool in postponing the onset of AIDS. While it remains to be seen whether an intervention such as described in our study would work in HIV infections, our experiments open new possibilities of therapy for treating persistence, one of the most refractory elements of retroviral infections," explains Dr.Hasenkrug.

Ulf Dittmer, Hong He, Ronald J. Messer, Simone Schimmer, Anke R.M. Olbrich, Claes Ohlen, Philip D. Greenberg, Ingunn M. Stromnes, Michihiro Iwashiro, Shimon Sakaguchi, Leonard H. Evans, Karin E. Peterson, Guojun Yang, and Kim J. Hasenkrug: "Functional Impairment of CD8+ T Cells by Regulatory T Cells during Persistent Retroviral Infection"

Published in Immunity, Volume 20, Number 3, March 2004, pages 293-304.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>