Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on nerve cell proteins show promise for reducing disability

17.03.2004


New findings in animals suggest a potential treatment to minimize disability after spinal cord and other nervous system injuries, say neuroscientists from Wake Forest University Baptist Medical Center.



"Our approach is based on a natural mechanism cells have for protecting themselves, called the stress protein response," said Michael Tytell, Ph.D., a neuroscientist and the study’s lead researcher. "We believe it has potential for preventing some of the disability that occurs as a result of nervous system trauma and disease."

The research showed that up to 50 percent of the motor and sensory nerve cell death could be prevented in mice with sciatic nerve injury. It is reported in the current issue of Cell Stress and Chaperones, a journal of stress biology and medicine.


"We are on our way to developing a treatment that is effective in preventing motor nerve cell death, which is significant to people because loss of motor neurons means paralysis," said Tytell, professor of neurobiology and anatomy at Wake Forest Baptist.

The goal of the work is to prevent or minimize the "secondary" cell death that occurs in the hours and days after a spinal cord or brain injury. During this period, cells surrounding the injury can become inflamed and die, a cascading response that worsens disability.

"There is a lot of cell death that takes place after the initial injury," said Tytell. "If you could prevent that, you would retain a lot more function."

Tytell’s approach is to augment the stress protein response, in which cells produce proteins called Hsc70 and Hsp70 that help protect them from death when they are exposed to heat, injury or any other stresses that threaten their normal function.

"This is a way cells have of protecting themselves," he said. "If we can figure out a way to facilitate that response, we could potentially limit the amount of damage that is caused."

For the study, the researchers treated injured sciatic nerves in mice with Hsc70 and Hsp70. In mice treated with the proteins, cell death was reduced by up to 50 percent compared to mice that weren’t treated.

Tytell said it is a novel idea that cells can be successfully treated with a protein that is ordinarily made inside the cells.

"We don’t know whether the protein is functioning in the same way as when it’s made in the cells," he said. "We’re working to learn more about this effect. If we can understand it better, we’ll know what form it should be in and what the doses should be to maximize the protective benefits."

Tytell and colleagues hope to use their knowledge about the proteins and how they work to develop drugs that could be used to treat injury. One idea is to develop a drug that would increase the production of the protective proteins.

Tytell said that over the years, there has been little progress in research on traumatic injury to the nervous system. One approach that is being studied is to replace the damaged cells with stem cells. However, there are technical problems getting the nerve "circuitry" to grow back to normal. He believes the idea of protecting cells from secondary cell death deserves additional research attention.

"That’s a goal we could potentially reach more quickly than replacing cells that are lost," he said.

A long-range goal is to determine if the proteins could be useful in the treatment of degenerative diseases of the brain, such as Alzheimer’s disease and Huntington’s disease. The research was supported by a grant from the Muscular Dystrophy Association, a Wake Forest University School of Medicine Venture Grant, and a private donation.

Tytell and Wake Forest hold a U.S. Patent on the use of Hsc70 and Hsp70 to prevent the death of injured cells. The results in the report will contribute to his efforts and those of his co-author, Lucien J. Houenou, a former faculty member of Wake Forest University School of Medicine, to develop therapeutic agents based on the cellular stress response.

Media Contacts: Karen Richardson, krchrdsn@wfubmc.edu, or Shannon Koontz, shkoontz@wfubmc.edu, at 336-716-4587.

About Wake Forest University Baptist Medical Center: Wake Forest Baptist is an academic health system comprised of North Carolina Baptist Hospital and Wake Forest University School of Medicine. It is licensed to operate 1,282 acute care, psychiatric, rehabilitation and long-term care beds and is consistently ranked as one of "America’s Best Hospitals" by U.S. News & World Report.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>