Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify crucial gene for blood development

16.03.2004


Blood cell formation depends on gene previously linked to leukemia



Researchers at Dana-Farber Cancer Institute have pinpointed a crucial gene on which the normal development of the body’s entire blood system depends. If the gene is absent, even the most basic blood stem cells cannot be generated. In a mutated form, this gene can cause a rare and devastating form of leukemia.

Called MLL, the gene makes a protein that regulates the activity of a number of other genes involved in proper development of tissues and organs during embryonic life. The experimental results being published in the March 16 issue of Developmental Cell demonstrate that MLL is necessary for the development of the "master" stem cells that generate all the mature blood cells.


The team led by Patricia Ernst, PhD, and Stanley Korsmeyer, MD, reports that the discovery of the gene’s critical role should help unveil important mechanisms in how the blood system develops, and could lead to ways of manipulating it in normal and cancerous conditions.

"The MLL gene, which is required to make all blood cells, is also a cause of a distinct human leukemia, suggesting that the blood’s earliest stem cells are involved in this cancer," explains Korsmeyer, who is the director of Program in Molecular Oncology at Dana-Farber and a Howard Hughes Medical Investigator.

MLL stands for "mixed lineage leukemia," an aggressive, often fatal type of blood cancer that affects a small number of infants and some adults who have relapsed following treatment for leukemia. Dana-Farber researchers identified this rare cancer in 2002 on the basis of its genetic profile – a specific pattern of gene activity in the cancer cells. It is caused by a mutation, or damage, in the MLL gene that results when the chromosome on which it resides breaks apart at that location. This chromosomal mishap leaves the MLL gene stuck in the "on" position so that white blood cells are overproduced, resulting in leukemia.

Scientists have previously found that chromosome breaks can damage other genes necessary for blood system development, and at least four such genes have been identified. The Korsmeyer group used embryonic stem cell methods to create cells in the laboratory as well as mice lacking the MLL gene, and showed that the gene’s absence had profound effects on the development of the blood-forming system – known as the hematopoietic system – that functions in embryonic, fetal and adult life.

A single hematopoietic stem cell can generate many different types of blood cells. This includes red blood cells, which carry oxygen to the body, and at least seven different types of white blood cells, which help heal wounds and form the immune defenses. Adult animals that lacked the MLL were unable to manufacture the various types of mature cells, and fetal animals without the gene could not generate the critical blood stem cells, says Korsmeyer, who is also the Sidney Farber Professor of Pathology and Professor of Medicine at Harvard Medical School.

These results show, the authors write, that MLL is part of "a select set of genes required for all definitive blood lineages in the embryo." The protein made by the MLL gene is known to regulate some of the master genes, known as HOX genes that guide the formation of body tissues and organs. Malfunction of these genes has been implicated in several types of cancer.

The paper’s other authors are Jill K. Fisher, William Avery and Stacey Wade of Dana-Farber and Daniel Foy of Children’s Hospital Boston. The research was supported by the National Institutes of Health, the Leukemia and Lymphoma Society, and the Beckenstein Fellowship.


###
Dana-Farber Cancer Institute (www.danafarber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Janet Haley Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>