Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Germ-free transparent fish open new window into gut development

16.03.2004


New model may help researchers understand and treat human digestive problems



Every animal — including humans — is home to "friendly" gut bacteria that help digest food and perform other important functions. Now, a tiny, transparent fish is literally offering biologists a new window into these mutually beneficial symbiotic relationships.
Researchers at Washington University School of Medicine in St Louis have shown for the first time that zebrafish can be raised in a germ-free environment. Zebrafish are transparent until they reach adulthood. Thus, these fish are providing researchers with unique opportunities to watch the gut develop with and without the beneficial effects of symbiotic bacteria.

"To untangle the complex interactions between humans and their friendly gut bacteria, we need simple animal models that can function as living test tubes," explains principal investigator Jeffrey I. Gordon, M.D. "These models are key to identifying the genes and chemicals that allow friendly bacteria to enhance our health."



Gordon is the Dr. Robert J. Glaser Distinguished University Professor and head of the Department of Molecular Biology and Pharmacology. The first author is John F. Rawls, Ph.D., a postdoctoral fellow in Gordon’s laboratory. The study, which will be published online the week of March 15 in the Proceedings of the National Academy of Sciences, also is the first to describe which bacteria normally reside in the zebrafish gut.

"Thanks to John’s painstaking work, we now have a new model for studying the molecular details of how symbionts affect animal development and physiology," Gordon says.

Germ-free zebrafish arrive 50 years after scientists announced a similar biological feat: a viable strain of mice with no bacteria in their bodies. Gordon’s team believes zebrafish provide a nice complement to ongoing mouse research for several reasons. First, the zebrafish gut is organized in ways similar to the mammalian gut, and an international effort to sequence the zebrafish genome is almost complete. Zebrafish also are small — less than one centimeter long during development — so it is easy to raise large numbers at once. And finally, unlike mice, it is possible to watch the gut develop and function in transparent zebrafish.

After months of trial and error with different experimental conditions, the team finally succeeded in developing germ-free zebrafish that survived until late juvenile stages.

They discovered that several biological processes were disturbed in germ-free zebrafish. These impairments were similar to those the team had documented previously in germ-free mice. For example, the ability to process nutrients was compromised, as was the zebrafish’s immune system. Also, the cells that line the intestine were not renewed as rapidly. Because the lining of the gut is continuously exposed to potentially toxic substances, this process of renewing the gut lining is critical for maintaining health.

To begin to decipher the mechanisms underlying the observed abnormalities, the team determined the genetic profile of three groups of fish: a group raised under conventional conditions with bacteria; a group raised in a germ-free environment; and an initially germ-free group later colonized with normal gut bacteria. The comparison revealed 212 genes with different levels of expression in germ-free fish compared to the other two groups that had been exposed to bacteria. The researchers found 66 zebrafish genes that are analogous to genes regulated by friendly bacteria in the mouse intestine.

The team then began compiling a list of the bacterial species that reside in the zebrafish gut, which also has never been done before.

"We wanted to determine which constituents of the microbial community might be responsible for specific biological processes," Rawls says. "To do that, you have to know something about the citizens in the bacterial community, which we didn’t. Using a molecular approach, we were able to identify a large number of types of bacteria that exist within the zebrafish digestive tract."

With this list of microbial residents in hand, the team then could systematically recolonize germ-free animals with selected microorganisms. Using representatives from each of two major classes of organisms found within the zebrafish gut, they determined that some host responses are quite specific for a given type of bacteria while others are more general.

"The power of using germ-free animals is that you can define how a single species, or combinations of bacterial species, function to help complete animal development and to benefit adult physiology," Gordon explains.

The team plans to use their germ-free zebrafish to characterize the chemicals produced by gut bacteria. According to Gordon, the chemical messengers developed by symbiotic gut bacteria over the course of millions of years of evolution could provide new approaches for supporting and healing the digestive system.


Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, the week of March 15 2004.

Funding from the Ellison Medical Foundation and the National Institutes of Health supported this research.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>