Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Germ-free transparent fish open new window into gut development


New model may help researchers understand and treat human digestive problems

Every animal — including humans — is home to "friendly" gut bacteria that help digest food and perform other important functions. Now, a tiny, transparent fish is literally offering biologists a new window into these mutually beneficial symbiotic relationships.
Researchers at Washington University School of Medicine in St Louis have shown for the first time that zebrafish can be raised in a germ-free environment. Zebrafish are transparent until they reach adulthood. Thus, these fish are providing researchers with unique opportunities to watch the gut develop with and without the beneficial effects of symbiotic bacteria.

"To untangle the complex interactions between humans and their friendly gut bacteria, we need simple animal models that can function as living test tubes," explains principal investigator Jeffrey I. Gordon, M.D. "These models are key to identifying the genes and chemicals that allow friendly bacteria to enhance our health."

Gordon is the Dr. Robert J. Glaser Distinguished University Professor and head of the Department of Molecular Biology and Pharmacology. The first author is John F. Rawls, Ph.D., a postdoctoral fellow in Gordon’s laboratory. The study, which will be published online the week of March 15 in the Proceedings of the National Academy of Sciences, also is the first to describe which bacteria normally reside in the zebrafish gut.

"Thanks to John’s painstaking work, we now have a new model for studying the molecular details of how symbionts affect animal development and physiology," Gordon says.

Germ-free zebrafish arrive 50 years after scientists announced a similar biological feat: a viable strain of mice with no bacteria in their bodies. Gordon’s team believes zebrafish provide a nice complement to ongoing mouse research for several reasons. First, the zebrafish gut is organized in ways similar to the mammalian gut, and an international effort to sequence the zebrafish genome is almost complete. Zebrafish also are small — less than one centimeter long during development — so it is easy to raise large numbers at once. And finally, unlike mice, it is possible to watch the gut develop and function in transparent zebrafish.

After months of trial and error with different experimental conditions, the team finally succeeded in developing germ-free zebrafish that survived until late juvenile stages.

They discovered that several biological processes were disturbed in germ-free zebrafish. These impairments were similar to those the team had documented previously in germ-free mice. For example, the ability to process nutrients was compromised, as was the zebrafish’s immune system. Also, the cells that line the intestine were not renewed as rapidly. Because the lining of the gut is continuously exposed to potentially toxic substances, this process of renewing the gut lining is critical for maintaining health.

To begin to decipher the mechanisms underlying the observed abnormalities, the team determined the genetic profile of three groups of fish: a group raised under conventional conditions with bacteria; a group raised in a germ-free environment; and an initially germ-free group later colonized with normal gut bacteria. The comparison revealed 212 genes with different levels of expression in germ-free fish compared to the other two groups that had been exposed to bacteria. The researchers found 66 zebrafish genes that are analogous to genes regulated by friendly bacteria in the mouse intestine.

The team then began compiling a list of the bacterial species that reside in the zebrafish gut, which also has never been done before.

"We wanted to determine which constituents of the microbial community might be responsible for specific biological processes," Rawls says. "To do that, you have to know something about the citizens in the bacterial community, which we didn’t. Using a molecular approach, we were able to identify a large number of types of bacteria that exist within the zebrafish digestive tract."

With this list of microbial residents in hand, the team then could systematically recolonize germ-free animals with selected microorganisms. Using representatives from each of two major classes of organisms found within the zebrafish gut, they determined that some host responses are quite specific for a given type of bacteria while others are more general.

"The power of using germ-free animals is that you can define how a single species, or combinations of bacterial species, function to help complete animal development and to benefit adult physiology," Gordon explains.

The team plans to use their germ-free zebrafish to characterize the chemicals produced by gut bacteria. According to Gordon, the chemical messengers developed by symbiotic gut bacteria over the course of millions of years of evolution could provide new approaches for supporting and healing the digestive system.

Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, the week of March 15 2004.

Funding from the Ellison Medical Foundation and the National Institutes of Health supported this research.

Gila Z. Reckess | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>