Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories are harder to forget than currently thought

16.03.2004


While it might not seem so the next time you go searching for your car keys, scientists at the University of Pennsylvania have shown that memories are not as fluid as current research suggests. Their findings challenge the prevailing notion on how memories are stored and remembered – or that a recalled memory could be altered or lost as it is "re-remembered."



"Current theories of memory state that the act of remembering turns a stored memory into something malleable that then needs to be re-encoded," said K. Matthew Lattal, a postdoctoral researcher in Penn’s Department of Biology and a co-author of the study. "We show that the act of retrieving an old memory and then putting it back into storage is a different process than creating a memory in the first place. Unfortunately, it could mean that ’erasing’ traumatic memories is not as simple as one might hope."

The study will be published in the Proceedings of the National Academy of Science and will be available on the Internet this week in the PNAS Online Early Edition.


Previous studies in rodents had shown that the process of encoding a memory could be blocked by the use of a protein synthesis inhibitor called anisomycin. Experiments with anisomycin helped lead to the acceptance of a theory in which a learned behavior is consolidated into a stored form and that then enters a ’labile’ – or adaptable – state when it is recalled. According to these previous studies, the act of putting a labile memory back into storage involves a reconsolidation process identical to the one used to store the memory initially. Indeed, experiments showed that anisomycin could make a mouse forget a memory if it were given anisomycin directly after remembering an event.

In the PNAS study, however, the Penn researchers showed that disruption of a "re-remembered" memory was not permanent.

"When we looked at mice 21 days after they were treated with anisomycin to block the reconsolidation of a memory, we showed that they could, in fact, remember the original learned behavior," Lattal said. "If you use the anisomycin, you can destroy a ’fresh’ memory, but the ’forgetting’ effect of anisomycin on an established memory is only temporary, at best."

According to the Penn researchers, the prominent theory of how memories are stored cannot account for the return of a supposedly forgotten memory. Accounting for the temporary loss of memories following the act of remembering will require further study.

"Whatever molecular mechanism occurs as a memory is being put back into storage, it allows the original memory to remain unaffected," said Ted Abel, an assistant professor in Penn’s Department of Biology and co-author of the study. "Ultimately, ’reconsolidation’ might not be an accurate portrayal of what is happening."

Memory-related illnesses, such as post-traumatic stress disorder, would undoubtedly benefit from a more accurate understanding of the molecular events behind memory storage.

"There is much we don’t know about the molecular events that occur as our brain processes memories – and much good that can come out of a deeper understanding of how memories work," Abel said.


The research was funded by grants from the National Institutes of Health, the Merck Foundation, the Packard Foundation, the University of Pennsylvania Research Foundation and the Whitehall Foundation.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>