Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse antibodies thwart SARS virus


The mouse immune system develops antibodies capable of single-handedly neutralizing the SARS virus, researchers at the National Institute of Allergy and Infectious Diseases (NIAID) report in the April 1 issue of the Journal of Virology, available online March 12. NIAID is part of the National Institutes of Health (NIH).

Genetic material from the SARS virus, stained red, is shown in cells lining the airways of mice. Image courtesy of Sherif R. Zaki M.D., PhD., Centers for Disease Control and Prevention.

This discovery affirms that researchers developing vaccines that trigger antibodies to the SARS virus are heading in the right direction. Vaccines can stimulate the immune system to produce antibodies or specialized cells or both to stop invading viruses.

"Since SARS emerged in people in late 2002, global public health experts have been anxiously awaiting a vaccine for this potentially fatal respiratory ailment. Knowing which arm of the immune system to trigger brings us one step closer to that goal," says NIAID Director Anthony S. Fauci, M.D.

"This is good news for people developing vaccines that would prime the immune system to produce antibodies against the SARS virus," says Kanta Subbarao, M.D., an investigator in NIAID’s Laboratory of Infectious Diseases and lead author on the study. "Our results also indicate that drug researchers can use laboratory mice as a model to evaluate whether a drug blocks SARS." Both findings could help lessen the time it takes to develop an effective vaccine or antiviral drugs for SARS.

In collaboration with colleagues at the Centers for Disease Control and Prevention and the NIH Clinical Center, Dr. Subbarao’s team examined whether mice could be infected with the SARS virus and if so, how the mouse immune system responded. Initial experiments revealed that while the SARS virus did not make the mice sick, it was able to infect cells lining mouse airways and lungs to reproduce itself.

Next, the NIAID team gave a subset of the mice a second dose of the SARS virus 28 days later. This time they found that the mice produced antibodies against the SARS virus and that the virus did not replicate in the mice lungs and airways. The researchers concluded that the first infection protected them from reinfection.

In their final experiment, the researchers tested whether the antibodies the mice produced could be transferred to other mice and protect them from infection. To do so, they transferred antibody-containing serum from mice that had a previous SARS infection to uninfected mice. When these uninfected mice were exposed to the SARS virus, the virus was unable to replicate. This "passive immunity" demonstrated that antibodies alone prevented the mice from becoming infected.

NIAID researchers are continuing their work to develop a mouse model that more closely mimics SARS in people. The ideal laboratory mouse for SARS studies would exhibit the same disease symptoms as people so researchers could also use it to study how the illness progresses. The present mouse model, however, will be very useful for evaluating vaccines and antiviral drugs, Dr. Subbarao says.

The SARS virus infected 8,098 people and killed 774 worldwide between Nov. 1, 2002, and July 31, 2003, according to the World Health Organization. For more information on SARS research, see NIAID’s updated fact sheet online at

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: K Subbarao et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. Journal of Virology DOI: 10.1128/JVI.78.7.000-000.2004. Available online on 12 March.

Linda Joy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>