Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse antibodies thwart SARS virus

15.03.2004


The mouse immune system develops antibodies capable of single-handedly neutralizing the SARS virus, researchers at the National Institute of Allergy and Infectious Diseases (NIAID) report in the April 1 issue of the Journal of Virology, available online March 12. NIAID is part of the National Institutes of Health (NIH).


Genetic material from the SARS virus, stained red, is shown in cells lining the airways of mice. Image courtesy of Sherif R. Zaki M.D., PhD., Centers for Disease Control and Prevention.



This discovery affirms that researchers developing vaccines that trigger antibodies to the SARS virus are heading in the right direction. Vaccines can stimulate the immune system to produce antibodies or specialized cells or both to stop invading viruses.

"Since SARS emerged in people in late 2002, global public health experts have been anxiously awaiting a vaccine for this potentially fatal respiratory ailment. Knowing which arm of the immune system to trigger brings us one step closer to that goal," says NIAID Director Anthony S. Fauci, M.D.


"This is good news for people developing vaccines that would prime the immune system to produce antibodies against the SARS virus," says Kanta Subbarao, M.D., an investigator in NIAID’s Laboratory of Infectious Diseases and lead author on the study. "Our results also indicate that drug researchers can use laboratory mice as a model to evaluate whether a drug blocks SARS." Both findings could help lessen the time it takes to develop an effective vaccine or antiviral drugs for SARS.

In collaboration with colleagues at the Centers for Disease Control and Prevention and the NIH Clinical Center, Dr. Subbarao’s team examined whether mice could be infected with the SARS virus and if so, how the mouse immune system responded. Initial experiments revealed that while the SARS virus did not make the mice sick, it was able to infect cells lining mouse airways and lungs to reproduce itself.

Next, the NIAID team gave a subset of the mice a second dose of the SARS virus 28 days later. This time they found that the mice produced antibodies against the SARS virus and that the virus did not replicate in the mice lungs and airways. The researchers concluded that the first infection protected them from reinfection.

In their final experiment, the researchers tested whether the antibodies the mice produced could be transferred to other mice and protect them from infection. To do so, they transferred antibody-containing serum from mice that had a previous SARS infection to uninfected mice. When these uninfected mice were exposed to the SARS virus, the virus was unable to replicate. This "passive immunity" demonstrated that antibodies alone prevented the mice from becoming infected.

NIAID researchers are continuing their work to develop a mouse model that more closely mimics SARS in people. The ideal laboratory mouse for SARS studies would exhibit the same disease symptoms as people so researchers could also use it to study how the illness progresses. The present mouse model, however, will be very useful for evaluating vaccines and antiviral drugs, Dr. Subbarao says.

The SARS virus infected 8,098 people and killed 774 worldwide between Nov. 1, 2002, and July 31, 2003, according to the World Health Organization. For more information on SARS research, see NIAID’s updated fact sheet online at http://www.niaid.nih.gov/factsheets/sars.htm.


###
NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: K Subbarao et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. Journal of Virology DOI: 10.1128/JVI.78.7.000-000.2004. Available online on 12 March.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://www.niaid.nih.gov/factsheets/sars.htm

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>