Scientists confirm phenomenon of falling beer bubbles

A new experiment by chemists from Stanford University and the University of Edinburgh has finally proven what beer lovers have long suspected: When beer is poured into a glass, the bubbles sometimes go down instead of up.

“Bubbles are lighter than beer, so they’re supposed to rise upward,” said Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Sciences at Stanford. ’’But countless drinkers have claimed that the bubbles actually go down the side of the glass. Could they be right, or would that defy the laws of physics?’’

This frothy question reached a head in 1999 after Australian researchers announced that they had created a computer model showing that it was theoretically possible for beer bubbles to flow downward. The Australians based their simulation on the motion of bubbles in a glass of Guinness draught – a popular Irish brew that contains both nitrogen and carbon dioxide gas.

But Zare and former Stanford postdoctoral fellow Andrew J. Alexander were skeptical of the virtual Guinness model and decided to put it to the test by analyzing several liters of the liquid brew.

“Indeed, Andy and I first disbelieved this and wondered if the people had had maybe too much Guinness to drink,” Zare recalled. “We tried our own experiments, which were fun but inconclusive. So Andy got hold of a camera that takes 750 frames a second and recorded some rather gorgeous video clips of what was happening.”

Bottoms up, bubbles down

A careful analysis of the video confirmed the Australian team’s findings: Beer bubbles can and do sink to the bottom of a glass. Why does this happen?

“The answer turns out to be really very simple,” Zare explained. “It’s based on the idea of what goes up has to come down. In this case, the bubbles go up more easily in the center of the beer glass than on the sides because of drag from the walls. As they go up, they raise the beer, and the beer has to spill back, and it does. It runs down the sides of the glass carrying the bubbles – particularly little bubbles – with it, downward. After a while it stops, but it’s really quite dramatic and it’s easy to demonstrate.”

The phenomenon also occurred in other beers that did not contain nitrogen, said Alexander, now a professor at the University of Edinburgh in Scotland. “The bubbles are small enough to be pushed down by the liquid,” he said. “We’ve shown you can do this with any liquid, really – water with a fizzing tablet in it, for example.”

Confirmation of the sinking-bubble phenomenon has relevance beyond settling barroom bets, according to the researchers.

“There’s a certain aspect of bubbles that always make you think it’s kids’ play and relaxation, but it’s serious stuff, too,” Zare said, pointing to ongoing research on fluidized beds – the mixing of solid particles with liquids and gases – which have important industrial and engineering applications.

“It’s just paying attention to the world around you and trying to figure out why things happen the way they do,” Alexander added. “In that case, anyone that goes into a pub and orders a pint of Guinness is a scientist.”

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors