Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Switched-Off’ genes put first chink in colon cell’s anti-tumor armor

15.03.2004


Johns Hopkins Kimmel Cancer Center scientists have identified a switched-off family of genes that may prove to be a significant and early dent in a colon cell’s anti-cancer armor. The inactivated genes, called SFRPs - for secreted frizzled-related protein - put the brake on a pathway of cell-growth genes that is an early step en route to cancer. Because the way SFRP genes are altered-through the attachment of so-called methyl groups-is reversible, the findings, reported in the March 14 advance online edition of Nature Genetics, also suggest potential anti-cancer value in green tea and other compounds that affect methylation. "SFRP could be a great target for preventing cancer," says Stephen Baylin, M.D., Ludwig Professor of Oncology and director for basic research at the Johns Hopkins Kimmel Cancer Center. A cancer cell stops the SFRP gene’s brake on cell growth by attaching a methyl group to a specific portion of the gene in a process called hypermethylation. Green tea and other compounds are thought to block enzymes that control methylation.



SFRP genes encode proteins that, when secreted on the cell’s surface, stop a chain reaction of cell growth directed by the WNT gene. WNT stands for "wingless type," which, along with SFRP genes, gets its name from characteristics of fruit flies with mutations in these genes. The WNT gene pathway has long been linked to colon cancer by scientists at the Kimmel Cancer Center and elsewhere.

"Previously, we thought that mutations downstream of the WNT gene were enough to trigger the cell to stay alive, keep growing and develop into a tumor. Our key finding is that the cell also may need to shut off SFRP genes to become cancerous," says Baylin. When Baylin’s team put SFRPs back into colon cancer cells with inactivated SFRP genes and mutations in the WNT pathway, the cells stopped growing uncontrollably and died.


The research team also found that inactivation of SFRP genes occurs in the earliest form of lesion, called an atypical crypt foci (earlier than polyps or cancer). Approximately 5 percent of these lesions become colon cancers. "The colon cancer process may start by shutting off SFRP genes, which allows the WNT pathway to stay on, and these colon cells grow into atypical crypt foci," Baylin explains. "Then, some of these early lesions may acquire mutations in the WNT pathway that push the cell into growth overdrive, failure to die properly, and development into polyps and, finally, cancer."

In addition to studying natural compounds, the scientists will be investigating the prevention properties of aspirin, non-steroidal anti-inflammatory drugs, and other drugs that block methylation to determine their effect on SFRP genes.


This research was funded by the National Institute of Environmental Health Services.

Other participants in the research are Hiromu Suzuki, D.Neil Watkins, Kam-Wing Jair, Kornel E. Schuebel, Yoshimitsu Akiyama, Bin Yang, and James G. Herman from the Johns Hopkins Kimmel Cancer Center; Sanford D. Markowitz from the Howard Hughes Medical Institute and Case Western Reserve University, Teresa P. Pretlow and Wei-Dong Chen from Case Western Reserve, Manon van Engeland from the University of Maastricht, the Netherlands, Minoru Toyota, Takashi Tokino and Kohzoh Imai from Sapporo Medical University, and Yuji Hinoda of the Yamaguchi University School of Medicine, Japan.

The license to the MSP technique used in this research belong to OncoMethylome. Drs. Baylin and Herman serve as consultants to OncoMethylome and are entitled to royalties from any commercial use of this procedure. The terms of this arrangement are being managed by the Johns Hopkins University according to its conflict of interest policies.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>