Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers model embryo implantation and tumour metastasis in fruit flies

12.03.2004


A research team at The Hospital for Sick Children (Sick Kids) led by Dr. Howard Lipshitz has discovered that a protein previously linked to mammalian embryo implantation, as well as tumour metastasis, plays similar roles in fruit fly development. This research is reported in the featured article in the March 9, 2004 issue of the scientific journal Current Biology.



"We were surprised to find such high evolutionary conservation of the structure, expression and function of these proteins - called integrin and basigin - between flies and mammals, whose ancestors diverged over 500 million years ago," said Dr. Lipshitz, a senior scientist and head of the Developmental Biology Research Program at Sick Kids and a professor of Medical Genetics and Microbiology at the University of Toronto. "In mammals, if you mutate the basigin protein, the embryo can’t implant, probably because the extraembryonic membrane cannot maintain close contact with the wall of the uterus. In flies, if you mutate the proteins, two different extraembryonic membranes fail to maintain contacts and the result is death of the embryo."

While fruit flies develop quite differently from humans, there is remarkable conservation of fundamental processes and the genes that control them. For example, two thirds of all known human disease genes are also present in fruit flies. "This cheap and tractable genetic system serves as a ’living test tube’ in which to figure out the fundamental molecular basis of human development and disease," added Dr. Lipshitz, also the Canada Research Chair in Developmental Biology.


Dr. Bruce Reed, a research associate in Dr. Lipshitz’s lab and the paper’s lead author, serendipitously discovered the fruit fly basigin protein two years ago, while doing live imaging studies with the state-of-the-art confocal microscopes in the Sick Kids Research Institute’s Imaging Facility acquired with support from the Canada Foundation for Innovation and the Ontario Innovation Trust. Looking for a marker that would enable him to see live cells - particularly those of the extraembryonic tissues - as they change their shape and motion, Dr. Reed saw the molecules that he would eventually identify as basigin. The molecules were attached to the membrane of the yolk sac, a placenta-like structure that feeds the fruit fly embryo.

When integrin and basigin molecules were depleted, the extraembryonic membranes could not establish close contacts, equivalent to mammalian embryos not implanting. In addition, Dr. Reed found that membrane contact was required for survival of the tissues. In mutants, the tissues fall apart and die. This has an exciting connection to tumour cell metastasis in humans. "When a tumour metastasizes, cells in fact have to decide to leave it and invade other tissues," said Dr. Reed. "Here, in flies, you have cells leaving the tissue, but their fate is instead, to die. All you need is something that prevents cells from dying when they leave the tissue and they would immediately become ’immortal’ and invasive."

"If you think about how the placenta has to be formed it is an invasive process and must be regulated so that it doesn’t behave like a metastatic tumour," said Dr. Reed. "The implication is that there is a fine balance between the good kind of invasion and the bad kind."

In mammals, basigin is expressed on the surface of 60 per cent of human gliomas, a type of nervous system tumour, and prior research has shown that the higher the level of expression of basigin the more invasive the tumour. Eventually, the research team may be able to model the molecular basis of metastasis using flies. The next steps involve the detailed study of the molecular biology of the tissue contact process and the ’metastatic’ behaviour of the cells as they leave the tissue in mutants.

Other members of the research team included Dr. Ronit Wilk of The Hospital for Sick Children and Dr. Frieder Schöck of McGill University. This research was supported by the National Cancer Institute of Canada, the Canada Research Chairs Program, and The Hospital for Sick Children Foundation.


The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.

Chelsea Gay | University of Toronto
Further information:
http://www.sickkids.ca

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>