Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers model embryo implantation and tumour metastasis in fruit flies

12.03.2004


A research team at The Hospital for Sick Children (Sick Kids) led by Dr. Howard Lipshitz has discovered that a protein previously linked to mammalian embryo implantation, as well as tumour metastasis, plays similar roles in fruit fly development. This research is reported in the featured article in the March 9, 2004 issue of the scientific journal Current Biology.



"We were surprised to find such high evolutionary conservation of the structure, expression and function of these proteins - called integrin and basigin - between flies and mammals, whose ancestors diverged over 500 million years ago," said Dr. Lipshitz, a senior scientist and head of the Developmental Biology Research Program at Sick Kids and a professor of Medical Genetics and Microbiology at the University of Toronto. "In mammals, if you mutate the basigin protein, the embryo can’t implant, probably because the extraembryonic membrane cannot maintain close contact with the wall of the uterus. In flies, if you mutate the proteins, two different extraembryonic membranes fail to maintain contacts and the result is death of the embryo."

While fruit flies develop quite differently from humans, there is remarkable conservation of fundamental processes and the genes that control them. For example, two thirds of all known human disease genes are also present in fruit flies. "This cheap and tractable genetic system serves as a ’living test tube’ in which to figure out the fundamental molecular basis of human development and disease," added Dr. Lipshitz, also the Canada Research Chair in Developmental Biology.


Dr. Bruce Reed, a research associate in Dr. Lipshitz’s lab and the paper’s lead author, serendipitously discovered the fruit fly basigin protein two years ago, while doing live imaging studies with the state-of-the-art confocal microscopes in the Sick Kids Research Institute’s Imaging Facility acquired with support from the Canada Foundation for Innovation and the Ontario Innovation Trust. Looking for a marker that would enable him to see live cells - particularly those of the extraembryonic tissues - as they change their shape and motion, Dr. Reed saw the molecules that he would eventually identify as basigin. The molecules were attached to the membrane of the yolk sac, a placenta-like structure that feeds the fruit fly embryo.

When integrin and basigin molecules were depleted, the extraembryonic membranes could not establish close contacts, equivalent to mammalian embryos not implanting. In addition, Dr. Reed found that membrane contact was required for survival of the tissues. In mutants, the tissues fall apart and die. This has an exciting connection to tumour cell metastasis in humans. "When a tumour metastasizes, cells in fact have to decide to leave it and invade other tissues," said Dr. Reed. "Here, in flies, you have cells leaving the tissue, but their fate is instead, to die. All you need is something that prevents cells from dying when they leave the tissue and they would immediately become ’immortal’ and invasive."

"If you think about how the placenta has to be formed it is an invasive process and must be regulated so that it doesn’t behave like a metastatic tumour," said Dr. Reed. "The implication is that there is a fine balance between the good kind of invasion and the bad kind."

In mammals, basigin is expressed on the surface of 60 per cent of human gliomas, a type of nervous system tumour, and prior research has shown that the higher the level of expression of basigin the more invasive the tumour. Eventually, the research team may be able to model the molecular basis of metastasis using flies. The next steps involve the detailed study of the molecular biology of the tissue contact process and the ’metastatic’ behaviour of the cells as they leave the tissue in mutants.

Other members of the research team included Dr. Ronit Wilk of The Hospital for Sick Children and Dr. Frieder Schöck of McGill University. This research was supported by the National Cancer Institute of Canada, the Canada Research Chairs Program, and The Hospital for Sick Children Foundation.


The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.

Chelsea Gay | University of Toronto
Further information:
http://www.sickkids.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>