Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McGill Scientists publish detailed picture of how nutrients and other molecules get into cells

10.03.2004


Scientists at the Montreal Neurological Institute and the Montreal Proteomics Network at McGill University have published the most complete picture to date of the components of the molecular machinery that controls the entry of nutrients and other molecules into cells. In a study published in the Proceedings of the National Academy of Sciences of the USA (PNAS), Dr. Peter McPherson and colleagues used proteomics, the large-scale study of proteins, to identify the protein complement of clathrin-coated vesicles. These vesicles are the vehicles by which cells are able to take up nutrients, such as cholesterol, from their environment. Defects in this uptake process have profound repercussions on cellular function and human health. For example, genetic diseases that lead to deficiencies in cholesterol uptake cause elevations in plasma cholesterol levels and early-onset coronary atherosclerosis. In the brain, problems in the uptake process involving clathrin-coated vesicles can disrupt the transmission of signals between nerve cells. This can lead to a number of disorders including defects in the ability to form new memories.

“Proteins are the workhorses in our cells,” explained Dr. McPherson, Associate Professor of Neurology and Neurosurgery, and Anatomy and Cell Biology at the Montreal Neurological Institute (MNI) at McGill University. “Increasingly, we are learning that proteins don’t work in isolation, but function in large arrays that form protein machines. Proteomics is exciting because it allows us to breakdown this complex machine into its component parts. We can then figure out how it is assembled, how the proteins interact with one another, and what goes wrong in disease.

“The study from Dr. McPherson and his colleagues is fundamental to our understanding of the cellular uptake process because it provides a comprehensive molecular inventory of the clathrin-coated vesicle. Its results have broad implications for a variety of fields in biology and medicine,” said Dr. Pietro De Camilli, Professor of Cell Biology, Yale University School of Medicine and Investigator, Howard Hughes Medical Institute.



Dr. McPherson together with postdoctoral fellow, Dr. François Blondeau and other colleagues identified 209 proteins. “About half of the proteins we identified are already known to be associated with clathrin-coated vesicles, validating our approach,” said Dr. Blondeau. “The rest are novel proteins or proteins with known function that were not previously known to be involved in this process. This identification allows us to hypothesize on how these proteins function in this essential activity of the cells.”

“Dr. McPherson’s work is a great example of the unique “Cell Map” approach that the Montreal Proteomics Network has taken to perform proteomics experimentation”, said Dr. John Bergeron, Director of the Montreal Proteomics Network. “This work allows us to build a map of the location and function of the proteins in the cell, creating a picture of interacting complexes and networks. Ultimately this map will provide a guide to understanding a large number of human diseases.”

In June 2000 researchers announced the first draft version of the human genome sequence. This was important because it spelled out all of the genes that define humans and gave the instructions for making the proteins. Proteins do the functional work in the cell and are much more complex than DNA. The roughly 30,000 human genes lead to more than three hundred thousand different proteins. The ability to rapidly and globally detect proteins represents the next step in biology. Revolutions in technology of mass spectrometry which were honoured by the 2002 Nobel Prize for chemistry, have paved the way for proteomics.

This research was supported by the Canadian Institutes of Health Research (CIHR), Valorisation Recherche Quebec, Genome Quebec (Montreal Proteomics Network) and Genome Canada and the Canada Foundation for Innovation.

Sandra McPherson | McGill University
Further information:
http://www.mni.mcgill.ca/announce/mcphersonpnas_e.htm
http://www.pnas.org/cgi/reprint/0308186101v1.pdf

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>