Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McGill Scientists publish detailed picture of how nutrients and other molecules get into cells

10.03.2004


Scientists at the Montreal Neurological Institute and the Montreal Proteomics Network at McGill University have published the most complete picture to date of the components of the molecular machinery that controls the entry of nutrients and other molecules into cells. In a study published in the Proceedings of the National Academy of Sciences of the USA (PNAS), Dr. Peter McPherson and colleagues used proteomics, the large-scale study of proteins, to identify the protein complement of clathrin-coated vesicles. These vesicles are the vehicles by which cells are able to take up nutrients, such as cholesterol, from their environment. Defects in this uptake process have profound repercussions on cellular function and human health. For example, genetic diseases that lead to deficiencies in cholesterol uptake cause elevations in plasma cholesterol levels and early-onset coronary atherosclerosis. In the brain, problems in the uptake process involving clathrin-coated vesicles can disrupt the transmission of signals between nerve cells. This can lead to a number of disorders including defects in the ability to form new memories.

“Proteins are the workhorses in our cells,” explained Dr. McPherson, Associate Professor of Neurology and Neurosurgery, and Anatomy and Cell Biology at the Montreal Neurological Institute (MNI) at McGill University. “Increasingly, we are learning that proteins don’t work in isolation, but function in large arrays that form protein machines. Proteomics is exciting because it allows us to breakdown this complex machine into its component parts. We can then figure out how it is assembled, how the proteins interact with one another, and what goes wrong in disease.

“The study from Dr. McPherson and his colleagues is fundamental to our understanding of the cellular uptake process because it provides a comprehensive molecular inventory of the clathrin-coated vesicle. Its results have broad implications for a variety of fields in biology and medicine,” said Dr. Pietro De Camilli, Professor of Cell Biology, Yale University School of Medicine and Investigator, Howard Hughes Medical Institute.



Dr. McPherson together with postdoctoral fellow, Dr. François Blondeau and other colleagues identified 209 proteins. “About half of the proteins we identified are already known to be associated with clathrin-coated vesicles, validating our approach,” said Dr. Blondeau. “The rest are novel proteins or proteins with known function that were not previously known to be involved in this process. This identification allows us to hypothesize on how these proteins function in this essential activity of the cells.”

“Dr. McPherson’s work is a great example of the unique “Cell Map” approach that the Montreal Proteomics Network has taken to perform proteomics experimentation”, said Dr. John Bergeron, Director of the Montreal Proteomics Network. “This work allows us to build a map of the location and function of the proteins in the cell, creating a picture of interacting complexes and networks. Ultimately this map will provide a guide to understanding a large number of human diseases.”

In June 2000 researchers announced the first draft version of the human genome sequence. This was important because it spelled out all of the genes that define humans and gave the instructions for making the proteins. Proteins do the functional work in the cell and are much more complex than DNA. The roughly 30,000 human genes lead to more than three hundred thousand different proteins. The ability to rapidly and globally detect proteins represents the next step in biology. Revolutions in technology of mass spectrometry which were honoured by the 2002 Nobel Prize for chemistry, have paved the way for proteomics.

This research was supported by the Canadian Institutes of Health Research (CIHR), Valorisation Recherche Quebec, Genome Quebec (Montreal Proteomics Network) and Genome Canada and the Canada Foundation for Innovation.

Sandra McPherson | McGill University
Further information:
http://www.mni.mcgill.ca/announce/mcphersonpnas_e.htm
http://www.pnas.org/cgi/reprint/0308186101v1.pdf

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>