Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reprogrammable Cells From Fat Are True Adult Stem Cells

09.03.2004


After successfully turning cells taken from human fat into different cell types, Duke University Medical Center researchers have now demonstrated that these specific cells are truly adult stem cells with multiple potential, instead of being a mixture of different types of cells, each with a more limited destiny.


Farshid Guilak, Ph.D



During the past three years, the Duke researchers exposed cells taken from human liposuction procedures to different cocktails of nutrients and vitamins, and "reprogrammed" them to grown into bone, cartilage, fat and nerve cells. At the time, they termed these cells adipose-derived stromal cells.

However, as a result of the latest set of experiments, the researchers are now confident that the majority of these cells are indeed truly adult stem cells that have the potential to be reprogrammed into traveling down multiple developmental paths. This is important, they said, because these cells could be a single, readily available source for creating new cells and tissues to treat disease.


The results of the Duke study were presented March 8, 2004, at the 50th annual scientific meeting of the Orthopedic Research Society by Kristen Lott, a fourth-year medical student working in the laboratory of Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team.

"Our findings indicate that 62 percent of the human fat cells could be reprogrammed into turning into at least two other different cell types," Lott said. "This percentage of cells is quite high, meaning that they have a great deal of flexibility and that their ultimate destiny may not be so pre-determined.

"These results suggest that these cells are truly stem cells that could provide a source of undifferentiated cells for multiples uses," Lott continued. "We’re still a long way from using these cells as therapies in humans, but we’re excited about the progress we’ve made so far."

Added Guilak, who is also on the faculty of Duke’s Pratt School of Engineering, "We don’t know exactly why body fat contains stem cells that can form bone or cartilage, but it does help dispel the dogma that adult stem cells can only be found in the bone marrow."

For their study, the Duke team took liposuction samples from three adult donors and then grew clones of these cells for up to 25 doublings. The cells were then exposed in culture to one of the four recipes -- mixtures of vitamins, growth factors and steroids -- for reprogramming cells into either fat, bone, cartilage or nerve cells.

While 62 percent of the cells were able to be "guided" down at least two different paths, only 10 percent failed to differentiate into any of the four cell types, Lott said.

"Additionally, the results of this study offer criteria for defining stem cell multipotency that should help researchers in further investigations," Guilak said. "More of the clones developed into bone, cartilage and nerve cells than they did into fat cells, which is another interesting finding."

Guilak believes that as a result of the successive culturing, the stem cells may have lost their ability to turn into fat cells.

"Our experiments took the cells through many doublings," Lott said. "Since these cells would potentially be in people for longer, we still need to better understand what happens to these cells over time."

The researchers anticipate that the first patients to benefit from this research are those who have suffered some sort of cartilage damage due to injury or trauma. Farther down the line, they foresee a time when entire joints ravaged by osteoarthritis can be relined with bioengineered cartilage.

"We don’t currently have a satisfactory remedy for people who suffer a cartilage-damaging injury," Guilak said. "There is a real need for a new approach to treating these injuries. We envision being able to remove a little bit of fat, and then grow customized, three-dimensional pieces of cartilage that would then be surgically implanted in the joint. One of the beauties of this system is that since the cells are from the same patients, there are no worries of adverse immune responses or disease transmission."

The study was funded by the National Institutes of Health and the North Carolina Biotechnology Center.

Other members of the research team were Hani Awad, Ph.D., from Duke and Jeffrey Gimble, M.D., from the Pennington Biomedical Research Center at Louisiana State University.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7452

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>