Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses may be environmentally friendly decontaminants

09.03.2004


Viruses could become the next generation of environmentally friendly decontaminants, replacing harmful chemicals like chlorine dioxide in cleaning up areas exposed to anthrax spores, according to findings released today at the American Society for Microbiology’s Biodefense Research Meeting. Researchers from the Biological Defense Research Directorate in Rockville, Maryland, the Defense Science Technology Laboratory in the United Kingdom, and the University of Maryland Biotechnology Institute presented their findings.



"Decontamination modalities for anthrax to date have centered on the use of toxic biocides (formaldehyde, chlorine dioxide) or gamma radiation. These approaches suffer from the dual handicap of toxicity to man and the environment and/or are extremely expensive," says Leslie Baillie, one of the scientists on the study. "There is an urgent need for strategies which are environmentally friendly, can be used to decontaminate a range of environments with little or no toxicity to fauna and flora and are cost effective."

In the study the researchers investigated the feasibility of using lytic bacteriophage, viruses that specifically target and kill bacteria, to reduce the level of spores made by the bacteria Bacillus thuringiensis a close but harmless relative of the organism that causes anthrax. Treatment of the soil with bacteriophage resulted in a significant reduction in spore contamination.


"This study demonstrates the feasibility of decontaminating soil containing spores of a B. thuringiensis, a close relative of B. anthracis, by the co-administration of lytic bacteriophage and spore germinants. Given the toxicity of standard decontamination regimens for B. anthracis, this approach represents an environmentally friendly, cost effective alternative," says Baillie.


The American Society for Microbiology (ASM) is the largest single life science society, composed of over 42,000 scientists, teachers, physicians, and health professionals. Its mission is to promote research and training in the microbiological sciences and to assist communication between scientists, policymakers, and the public to improve health, economic well being, and the environment.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org
http://www.asmbiodefense.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>