Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses may be environmentally friendly decontaminants

09.03.2004


Viruses could become the next generation of environmentally friendly decontaminants, replacing harmful chemicals like chlorine dioxide in cleaning up areas exposed to anthrax spores, according to findings released today at the American Society for Microbiology’s Biodefense Research Meeting. Researchers from the Biological Defense Research Directorate in Rockville, Maryland, the Defense Science Technology Laboratory in the United Kingdom, and the University of Maryland Biotechnology Institute presented their findings.



"Decontamination modalities for anthrax to date have centered on the use of toxic biocides (formaldehyde, chlorine dioxide) or gamma radiation. These approaches suffer from the dual handicap of toxicity to man and the environment and/or are extremely expensive," says Leslie Baillie, one of the scientists on the study. "There is an urgent need for strategies which are environmentally friendly, can be used to decontaminate a range of environments with little or no toxicity to fauna and flora and are cost effective."

In the study the researchers investigated the feasibility of using lytic bacteriophage, viruses that specifically target and kill bacteria, to reduce the level of spores made by the bacteria Bacillus thuringiensis a close but harmless relative of the organism that causes anthrax. Treatment of the soil with bacteriophage resulted in a significant reduction in spore contamination.


"This study demonstrates the feasibility of decontaminating soil containing spores of a B. thuringiensis, a close relative of B. anthracis, by the co-administration of lytic bacteriophage and spore germinants. Given the toxicity of standard decontamination regimens for B. anthracis, this approach represents an environmentally friendly, cost effective alternative," says Baillie.


The American Society for Microbiology (ASM) is the largest single life science society, composed of over 42,000 scientists, teachers, physicians, and health professionals. Its mission is to promote research and training in the microbiological sciences and to assist communication between scientists, policymakers, and the public to improve health, economic well being, and the environment.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org
http://www.asmbiodefense.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>