Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key gene identified for development of inner-ear structure required for balance

09.03.2004


Ears do more than hear; they also control balance and our perception of gravity and motion. An international team of scientists including David E. Bergstrom and John C. Schimenti, at The Jackson Laboratory in Bar Harbor; and Rainer Paffenholz and Gabriele Stumm at Ingenium Pharmaceuticals AG in Martinsried, Germany, identified for the first time a protein whose enzymatic function is indispensable for development of this balance system.



The scientists had known that mice with the head tilt mutation known as het hear perfectly well, but carry their head at an angle and lack coordination. Mice and humans sense motion in the same way. When our heads move, a cluster of crystalline structures known as otoconia in the inner ear moves somewhat independently. This shearing motion stimulates underlying nerve endings to create the sensation of motion.

The scientists found the head-tilt mice have no otoconia, but otherwise exhibit perfect inner ear formation. "Because animals use otoconia to sense their orientation in space and to monitor posture and movements, the behavior and motor coordination deficits of [the mice] can be conclusively explained by the lack of otoconia," the researchers note in the paper.


Prior research had located the head-tilt mutation to a large region on Chromosome 17. "We had access to five strains of mice with the defect," Bergstrom explains, "and we used these mice in breeding experiments to zero in on the chromosomal location of, and eventually identify, the underlying mutant gene, Nox3." While the exact process of otoconia formation has yet to be defined, this identifies for the first time a protein with a clear enzymatic function as indispensable for otoconia formation, the scientists note.

The mouse gene corresponds to the human gene NOX3. In both mouse and human, the gene affects production of the protein NADPH oxidase 3. Aging, some medications, infections and injury can damage otoconia, resulting in vertigo and other balance problems. Discovering the role of NADPH oxidase 3 could aid researchers seeking a way to regenerate otoconia in humans.

Bergstrom says he and his Jackson Laboratory colleagues enjoyed an exceptionally productive collaboration with their colleagues at Ingenium Pharmaceuticals AG. "It has been such a nice opportunity to work and interact with such a pleasant group of scientists that share our interests".

The U.S. portion of the research was funded by the National Institute on Deafness and Other Communication Disorders. Researchers dedicated the paper in memory of Rebecca Bergstrom, a co-author of the paper, who passed away February 6 after a lengthy battle with breast cancer.


Paffenholz R, Bergstrom R, Pasutto F, Wabnitz P, Munroe R, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti J, and Bergstrom D. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes & Development, Cold Spring Harbor, N.Y., March 2004.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>