Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Way to Repair Cartilage Damage

09.03.2004


The new technique provide support for cartilage cells as they regenerate new cartilage tissue



Duke biomedical engineers have developed a technique to use a natural polymer to fill in and protect cartilage wounds within joints, and to provide supportive scaffolding for new cartilage growth. Their advance offers a potential solution for a central problem in generating new cartilage: providing a support for cartilage cells as they regenerate cartilage tissue.

In tests on rabbits, Lori Setton, associate professor of biomedical engineering at Duke’s Pratt School of Engineering, and her research team stimulated new cartilage growth in knee joint cartilage defects using a light-activated polymer hydrogel composed from a specialized molecule, hyaluronan. The hyaluronan-based polymer creates a protective cap over the wound, enabling joint movement while providing the structural support and chemical environment for new cartilage tissue to grow and fill the defect.


Dana Nettles, a graduate student in Setton’s laboratory, presented the research findings on Monday, March 8, 2004, at the Orthopedic Research Society Annual meeting in San Francisco. A paper titled "In Situ Crosslinkable Hyaluronan for Articular Cartilage Repair" will be published in the March 2004 issue of Annals of Biomedical Engineering.

"We feel that the outcomes from this study suggest that therapies like this one hold promise for future, successful cartilage repair procedures," said Nettles.

Trauma and injuries to the knees and hips commonly involve damage to the articular cartilage, the thin layer lining the ends of articulating joints. If left untreated, the cartilage defects do not repair because the local cells are unable to regenerate new tissue. Patients suffering from cartilage damage will go on to develop osteoarthritis, a degenerative joint disease characterized by the breakdown of the joint’s cartilage, causing pain and loss of movement. Nearly 21 million Americans suffer from osteoarthritis, principally in joints of the hip and knee.

Natural hyaluronan polymer in joints provides strength to cartilage and creates a cushioned self-lubricating surface that enables bones to rub against each other smoothly. Hyaluranon injections are already being used to ease joint pain, but the benefits fade after six months or so. Another approach involves culturing the patient’s own cells in the laboratory and then sewing a "tissue patch" into the injury site. Costing more than $26,000, the tissue patch approach works well for athletic injuries, but isn’t recommended for osteoarthritis treatment, said Setton.

Focusing on an alternative approach that provides for rapid and easy defect repair, Setton and her Duke University Medical Center colleague, T. Parker Vail of Orthopaedic Surgery, are developing a treatment to encourage natural cartilage tissue repair using the locally present cell population.

"Cartilage is a tissue that does not have the ability to heal itself, so there cannot be any healing without outside intervention," Vail continued. "There are still many hurdles and challenges to overcome, but we have been very encouraged by the positive results to date. The bringing together of the expertise of the disparate fields of engineering and medicine will yield the breakthroughs necessary to advance biomedical research."

In their process, the researchers first created a hyaluronan-based solution that easily pours into cartilage tears and fills in ragged wound margins. The hyaluronan was chemically altered to have multiple sticky sites that are used to latch on to each other.

The researchers then treat the polymer gel with laser light, turning the liquid into a solid, a process that takes about 30 seconds.

"The solid polymer creates a scaffold of support that fills the defect, and provides the correct physical and chemical cues to enable cells that move into the defect to differentiate appropriately into cartilage cells," said Setton.

Flexible and tough, the solid polymer has mechanical properties that can be controlled during synthesis for optimal function in the joint.

In a recently completed study, Vail applied the hyaluronan polymer to animal joint wounds in a operative procedure. After two weeks, cross sections showed that the material integrated well with existing cartilage tissue, and also encouraged cells to infiltrate and lay down new cartilage growth. The polymer also showed signs of degrading, something that needs to happen as new tissue grows to replace it, Setton said.

Calling the work a promising proof of concept, Setton said there is much work still to be done. Setton is working with Dana Nettles to optimize the properties that will make the hyaluronan polymer treatment most effective. For example, the researchers need to determine the pore size that optimizes nutrient diffusion and cell movement. They also need to know how much mechanical strength the polymer needs to maintain as new cells grow, and how quickly the polymer needs to degrade.

Ideally, Setton said she would like to develop a treatment that would last for at least 10 years.

"If we can heal lesions in joint cartilage with this type of bridge therapy, we could prevent end stage osteoarthritis that leads to knee replacements," she said.

Setton’s collaborators include Vail and Mark Grinstaff of Boston University. This research was funded by support from the National Institutes of Health, the Orthopaedic Research and Education Foundation, and a pre-doctoral National Science Foundation fellowship.

Deborah Hill | Duke University
Further information:
http://www.dukenews.duke.edu/news/repair_0304.html
http://settonlab.pratt.duke.edu/index.htm/

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>