Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device detects, traps and deactivates airborne viruses and bacteria using ’smart’ catalysts

08.03.2004


Anthrax is nasty stuff. An environmental engineer at WUSTL uses smart catalysts in his device that can detect the airborne presence of anthrax and other bioweapons and disable it.


An environmental engineer at Washington University in St. Louis with his doctoral student has patented a device for trapping and deactivating microbial particles. The work is promising in the war on terrorism for deactivating airborne bioagents and bioweapons such as the smallpox virus, anthrax and ricin, and also in routine indoor air ventilation applications such as in buildings and aircraft cabins.

Pratim Biswas, Ph.D.,Stifel & Quinette Jens Professor of Environmental Engineering Sciences and director of Environmental Engineering Sciences at Washington University, combines an electrical field with soft X-rays and smart catalysts to capture and destroy bioagents such as the smallpox virus.

"When the aerosol particles come into the device they are charged and trapped in an electrical field," Biswas explained. "Any organic material is oxidized, so it completely deactivates the organism."



Biswas noted that conventional corona systems do not charge and effectively trap nanometer-sized particles, such as viruses. But his invention combines soft x-rays with a conventional corona that has been proven to be very effective at charging and trapping particles in a range of sizes.

On the walls of the device, Biswas has coated nanoparticles that catalyze the oxidation. These nanoparticles are "smart" objects that are turned "on" and "off" by irradiation.

"This smart catalyst is unique," Biswas said. "If we should encounter some organism that is very difficult to degrade, I can engineer my smart catalysts to function so that they will oxidize those molecules."

Biswas and his collaborators have tested the device using non-potent polio virus and have achieved 99.9999 percent efficiency. He currently is collaborating with the Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (MRCE) and his Washington University colleague, Lars Angenent, to identify the mechanistic pathways of biomolecular degradation.

Washington University in St. Louis has a core group of six faculty who are mainstream aerosol researchers, and work on different aspects related to Aerosol Science and Engineering. This nationally and internationally recognized group of scientists, one of the largest groups in U. S. universities, studies the synthesis and environmental impact of nanoparticles, atmospheric pollution at the regional and global scales, and develops the next generation of instrumentation for detection of these particles, as well as several environmental nanotechnology applications.

Biswas was part of a special colloquium, "Research in Aerosols and Air Quality," held March 2, 2004, at Washington University. The event was organized under the university’s Sesquicentennial Environmental Initiative wherein world-renowned researchers reported the latest findings in the aerosol engineering field. The colloquium, was part of a series of environmental dialogues held in honor of Washington University’s 150th anniversary.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/726.html

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>