Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device detects, traps and deactivates airborne viruses and bacteria using ’smart’ catalysts

08.03.2004


Anthrax is nasty stuff. An environmental engineer at WUSTL uses smart catalysts in his device that can detect the airborne presence of anthrax and other bioweapons and disable it.


An environmental engineer at Washington University in St. Louis with his doctoral student has patented a device for trapping and deactivating microbial particles. The work is promising in the war on terrorism for deactivating airborne bioagents and bioweapons such as the smallpox virus, anthrax and ricin, and also in routine indoor air ventilation applications such as in buildings and aircraft cabins.

Pratim Biswas, Ph.D.,Stifel & Quinette Jens Professor of Environmental Engineering Sciences and director of Environmental Engineering Sciences at Washington University, combines an electrical field with soft X-rays and smart catalysts to capture and destroy bioagents such as the smallpox virus.

"When the aerosol particles come into the device they are charged and trapped in an electrical field," Biswas explained. "Any organic material is oxidized, so it completely deactivates the organism."



Biswas noted that conventional corona systems do not charge and effectively trap nanometer-sized particles, such as viruses. But his invention combines soft x-rays with a conventional corona that has been proven to be very effective at charging and trapping particles in a range of sizes.

On the walls of the device, Biswas has coated nanoparticles that catalyze the oxidation. These nanoparticles are "smart" objects that are turned "on" and "off" by irradiation.

"This smart catalyst is unique," Biswas said. "If we should encounter some organism that is very difficult to degrade, I can engineer my smart catalysts to function so that they will oxidize those molecules."

Biswas and his collaborators have tested the device using non-potent polio virus and have achieved 99.9999 percent efficiency. He currently is collaborating with the Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (MRCE) and his Washington University colleague, Lars Angenent, to identify the mechanistic pathways of biomolecular degradation.

Washington University in St. Louis has a core group of six faculty who are mainstream aerosol researchers, and work on different aspects related to Aerosol Science and Engineering. This nationally and internationally recognized group of scientists, one of the largest groups in U. S. universities, studies the synthesis and environmental impact of nanoparticles, atmospheric pollution at the regional and global scales, and develops the next generation of instrumentation for detection of these particles, as well as several environmental nanotechnology applications.

Biswas was part of a special colloquium, "Research in Aerosols and Air Quality," held March 2, 2004, at Washington University. The event was organized under the university’s Sesquicentennial Environmental Initiative wherein world-renowned researchers reported the latest findings in the aerosol engineering field. The colloquium, was part of a series of environmental dialogues held in honor of Washington University’s 150th anniversary.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/726.html

More articles from Life Sciences:

nachricht Results Challenge Conventional Wisdom About Where the Brain Begins Processing Visual Information
04.03.2015 | Vanderbilt University

nachricht Sugar for synthetic cells
04.03.2015 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

70 Nobel laureates and 672 young scientists expected at Lindau

04.03.2015 | Event News

Registration open: 11th X-ray Forum for Customers of GE’s Digital Radiography and Industrial CT Inspection Technologies

04.03.2015 | Event News

ΣYSTEMS INTEGRATION in Finland focusses on high-tech printing

04.03.2015 | Event News

 
Latest News

Flexible and Functional – Prefabricated Façade Elements Simplify Building Renovation

04.03.2015 | Architecture and Construction

Emissions under control: comprehensive exhaust air analysis during laser processing of plastics

04.03.2015 | Ecology, The Environment and Conservation

Graphene, the wonder material, goes textile

04.03.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>