Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize genome pilot sequencing project results in six-fold reduction of effective size of maize genome

08.03.2004


Cutting corn down to size


A team of scientists reports a major advance in seqencing large genomes. And they have done their work on the plant that made the Midwest famous - maize, or corn, if you will



A team of scientists that includes a Washington University in St. Louis biologist, has evaluated and validated a gene-enrichment strategy for genome sequencing and has reported a major advance in sequencing large genomes. The team showed a six-fold reduction of the effective size of the Zea mays (maize or corn) genome while creating a four-fold increase in the gene identification rate when compared to standard whole-genome sequencing methods.

A team of scientists reports a major advance in seqencing large genomes. And they have done their work on the plant that made the Midwest famous - maize, or corn, if you will.
The Maize Genomics Consortium reported their results in the December 19, 2003 issue of Science magazine. Karel R. Schubert, Ph.D., Washington University affiliate professor of biology in Arts & Sciences, was the principal investigator of the study. Schubert is vice president of technology management and science administration at the Donald Danforth Plant Science Center in St. Louis.



The Maize Genomics Consortium, consisting of The Donald Danforth Plant Science Center, The Institute for Genomic Research (TIGR), Purdue University, and Orion Genomics, was awarded a two-year, $6 million plant genome grant on September 20, 2002 by the National Science Foundation (NSF) to develop and evaluate high-throughput and robust strategies to isolate and sequence maize genes. The two gene-enrichment methods used in the research published in Science are methyl-filtration and high-Cot selection.

According to Schubert and W. Brad Barbazuk, Ph.D., senior bioinformatics specialist and assistant domain member, both at the Donald Danforth Plant Science Center, the overall goal of the pilot sequencing project in maize is to derive an effective strategy to sequence the maize genome. To meet this goal, the Maize Genomics Consortium will generate approximately 800,000 total sequence reads using the methyl-filtration and high-Cot methods, with the results published in Science describing the analysis of the first 200,000 sequence reads.

It is a challenging effort to sequence the maize genome, as its size and structure preclude using the standard whole-genome methods for sequence analysis and alignment. At about 2 to 3 billion base pairs, the maize genome is estimated to be 20 times larger than Arabidopsis, an experimental plant that is the first plant genome to be completely sequenced. However, maize probably has only twice as many genes as Arabidopsis. The rest of the maize genome is made up of a large amount of highly repetitive DNA including many mobile DNA elements. Unlike Arabidopsis genes, the maize genes are not spaced evenly throughout the genome but instead are clustered in "islands" floating in a large "sea" of repeat-sequence DNA.

To sequence these "islands", the Maize Consortium used two methods for gene-enrichment, methyl-filtration and high-Cot selection. The methyl-filtration method was developed at Cold Spring Harbor Laboratory in Long Island, New York, and has been exclusively licensed to St. Louis-based Orion Genomics. It is based on the finding that highly repetitive DNA is modified (methylated) while genes are largely free of such modification. The well-established high-Cot selection method was applied at Purdue University and exploits the fact that gene sequences are in relatively low abundance compared with the large amount of repeated non-genic sequences. These methods target overlapping, but non-identical fractions of the genome that are highly enriched for genes sequences.

Washington University in St. Louis is part of the alliance that makes The Donald Danforth Plant Science Center. The Center is a not-for-profit research institution that was founded in 1998 as the product of a unique and innovative alliance joining the University of Illinois at Urbana-Champaign, the Missouri Botanical Garden, the University of Missouri-Columbia, Monsanto Company, Purdue University, and Washington University in St. Louis. The mission of the Danforth Center is to increase understanding of basic plant biology; to apply new knowledge for the benefit of human nutrition and health and to improve the sustainability of agriculture worldwide; to facilitate the rapid development and commercialization of promising technologies and products; and to contribute to the education and training of graduate and postdoctoral students, scientists, and technicians from around the world. Please visit www.danforthcenter.org for additional information.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/697.html

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>