Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize genome pilot sequencing project results in six-fold reduction of effective size of maize genome

08.03.2004


Cutting corn down to size


A team of scientists reports a major advance in seqencing large genomes. And they have done their work on the plant that made the Midwest famous - maize, or corn, if you will



A team of scientists that includes a Washington University in St. Louis biologist, has evaluated and validated a gene-enrichment strategy for genome sequencing and has reported a major advance in sequencing large genomes. The team showed a six-fold reduction of the effective size of the Zea mays (maize or corn) genome while creating a four-fold increase in the gene identification rate when compared to standard whole-genome sequencing methods.

A team of scientists reports a major advance in seqencing large genomes. And they have done their work on the plant that made the Midwest famous - maize, or corn, if you will.
The Maize Genomics Consortium reported their results in the December 19, 2003 issue of Science magazine. Karel R. Schubert, Ph.D., Washington University affiliate professor of biology in Arts & Sciences, was the principal investigator of the study. Schubert is vice president of technology management and science administration at the Donald Danforth Plant Science Center in St. Louis.



The Maize Genomics Consortium, consisting of The Donald Danforth Plant Science Center, The Institute for Genomic Research (TIGR), Purdue University, and Orion Genomics, was awarded a two-year, $6 million plant genome grant on September 20, 2002 by the National Science Foundation (NSF) to develop and evaluate high-throughput and robust strategies to isolate and sequence maize genes. The two gene-enrichment methods used in the research published in Science are methyl-filtration and high-Cot selection.

According to Schubert and W. Brad Barbazuk, Ph.D., senior bioinformatics specialist and assistant domain member, both at the Donald Danforth Plant Science Center, the overall goal of the pilot sequencing project in maize is to derive an effective strategy to sequence the maize genome. To meet this goal, the Maize Genomics Consortium will generate approximately 800,000 total sequence reads using the methyl-filtration and high-Cot methods, with the results published in Science describing the analysis of the first 200,000 sequence reads.

It is a challenging effort to sequence the maize genome, as its size and structure preclude using the standard whole-genome methods for sequence analysis and alignment. At about 2 to 3 billion base pairs, the maize genome is estimated to be 20 times larger than Arabidopsis, an experimental plant that is the first plant genome to be completely sequenced. However, maize probably has only twice as many genes as Arabidopsis. The rest of the maize genome is made up of a large amount of highly repetitive DNA including many mobile DNA elements. Unlike Arabidopsis genes, the maize genes are not spaced evenly throughout the genome but instead are clustered in "islands" floating in a large "sea" of repeat-sequence DNA.

To sequence these "islands", the Maize Consortium used two methods for gene-enrichment, methyl-filtration and high-Cot selection. The methyl-filtration method was developed at Cold Spring Harbor Laboratory in Long Island, New York, and has been exclusively licensed to St. Louis-based Orion Genomics. It is based on the finding that highly repetitive DNA is modified (methylated) while genes are largely free of such modification. The well-established high-Cot selection method was applied at Purdue University and exploits the fact that gene sequences are in relatively low abundance compared with the large amount of repeated non-genic sequences. These methods target overlapping, but non-identical fractions of the genome that are highly enriched for genes sequences.

Washington University in St. Louis is part of the alliance that makes The Donald Danforth Plant Science Center. The Center is a not-for-profit research institution that was founded in 1998 as the product of a unique and innovative alliance joining the University of Illinois at Urbana-Champaign, the Missouri Botanical Garden, the University of Missouri-Columbia, Monsanto Company, Purdue University, and Washington University in St. Louis. The mission of the Danforth Center is to increase understanding of basic plant biology; to apply new knowledge for the benefit of human nutrition and health and to improve the sustainability of agriculture worldwide; to facilitate the rapid development and commercialization of promising technologies and products; and to contribute to the education and training of graduate and postdoctoral students, scientists, and technicians from around the world. Please visit www.danforthcenter.org for additional information.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/697.html

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>