In work that may lead to better understanding of genetic diseases, researchers at the Broad Institute of MIT and Harvard show that bakers yeast was created hundreds of millions of years ago when its ancestor temporarily became a kind of super-organism with twice the usual number of chromosomes and an increased potential to evolve.
The study is by postdoctoral fellow and lead author Manolis Kellis of the Broad (rhymes with "code") Institute; Eric S. Lander, Broad director; and Bruce W. Birren, co-director of the Broads sequencing and analysis program. It will be published online by Nature on March 7.
Scientists have postulated that in a handful of instances in evolutionary history, cells may have replicated their entire genomes in events called whole genome duplication, but no definitive proof existed. The Broad Institute work shows conclusively for the first time that the well-studied organism bakers yeast originated through this little-understood phenomenon, resolving a long-standing controversy on the ancestry of the yeast genome.
Scott Turner | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/
One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie
The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy