Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny molecular motors shed light on cell function, say Stanford researchers

05.03.2004


Every cell in the body has what James Spudich, PhD, calls "a dynamic city plan" comprised of molecular highways, construction crews, street signs, cars, fuel and exhaust. Maintenance of this highly organized structure is fundamental to the development and function of all cells, Spudich says, and much of it can be understood by figuring out how the molecular motors do the work to keep cells orderly.



Spudich, biochemistry professor at the Stanford University School of Medicine, and Stanford physics graduate student David M. Altman report in the March 5 issue of Cell how a type of molecular motor provides the rigidity needed by the tiny sensors in the inner ear in order to respond to sound. They found that this motor creates the proper amount of tension in the sensors and anchors itself to maintain that tension.

"Our general feeling is that tension-sensitive machines are at the heart of the dynamic city plan," said Spudich. Their National Institutes of Health-funded study has implications far beyond how an obscure molecule provides rigidity for a protein in the inner ear. A motor able to create structural changes by taking up slack in proteins and clamping down so that they remain in a rigid position may help explain many intricacies of cellular organization, such as how chromosomes line up and separate during cell division.


"Studies like this allow you to understand enough details of these motors to design small molecules to affect their function," said Spudich, who is also the Douglass M. and Nola Leishman Professor of Cardiovascular Disease. Toward this end he has co-founded a company, Cytokinetics, in hopes of creating drugs that selectively target molecular motors involved in cancer and cardiovascular disease.

For years, Spudich’s lab has studied molecular motors called myosins, proteins that carry out cellular motion by attaching to and "walking" along fibers of actin. The interaction of actin and myosin is the mechanism behind cell actions such as muscle contractions, the pinching off of two daughter cells from a mother cell during division and the hauling of cargo molecules around in a cell. Of the 18 types of myosin molecules, their current findings examine myosin VI, thought to be responsible for setting the tension for stereocilia, actin-filled rods on the sound-sensing hair cells of the inner ear. A defect in myosin VI results in deafness.

Although it was known that myosin moves along actin fibers, it had never previously been demonstrated how myosin could function as an anchor or a clamp. To study this, Spudich and Altman needed techniques beyond the realm of biology. "This is a problem for physicists who think in terms of forces and putting a load on a system," said Spudich. Altman specializes in optical tweezers, a focused laser that allows the manipulation of microscopic beads, and provided the required physics know-how by applying his expertise to studying myosin activity precisely.

The Cell paper includes a number of complex equations describing how the myosin VI anchor works, but the researchers have easily simplified the concept: think of the palm of an open hand as the hair cell and the fingers as the stereocilia. Myosin VI has two legs as well as a tail, which can bind to other things. The researchers think the myosin VI tail in the hair cell binds to the webbing between the fingers - the cell membrane between the stereocilia - and then as the legs walk across the palm (the hair cell) it pulls the webbing between the fingers taut which makes the stereocilia rigid.

As the motor continues walking, the taut membrane strains the motor and distorts its shape, which turns the motor into an anchor. If the webbing/membrane becomes slack again, the motor regains its normal shape and begins walking again. It continues walking until the membrane becomes taut again.

"You can imagine that if a motor like this didn’t stall, it would end up continuing to burn energy in the cell and would keep pulling this membrane, but it would be wasting a lot of energy," said Altman, who is first author of the paper. "So this change has made it a smart and efficient motor."

"The sophistication of what David has been able to do here in terms of looking at a single molecule and how it behaves is unusual," Spudich noted. "There are very few proteins in biology that have been analyzed and understood down to this level." Altman is now looking at defective myosin VI that causes deafness in hopes of learning even more about the precise refinement of the molecular motor.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>