Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny molecular motors shed light on cell function, say Stanford researchers

05.03.2004


Every cell in the body has what James Spudich, PhD, calls "a dynamic city plan" comprised of molecular highways, construction crews, street signs, cars, fuel and exhaust. Maintenance of this highly organized structure is fundamental to the development and function of all cells, Spudich says, and much of it can be understood by figuring out how the molecular motors do the work to keep cells orderly.



Spudich, biochemistry professor at the Stanford University School of Medicine, and Stanford physics graduate student David M. Altman report in the March 5 issue of Cell how a type of molecular motor provides the rigidity needed by the tiny sensors in the inner ear in order to respond to sound. They found that this motor creates the proper amount of tension in the sensors and anchors itself to maintain that tension.

"Our general feeling is that tension-sensitive machines are at the heart of the dynamic city plan," said Spudich. Their National Institutes of Health-funded study has implications far beyond how an obscure molecule provides rigidity for a protein in the inner ear. A motor able to create structural changes by taking up slack in proteins and clamping down so that they remain in a rigid position may help explain many intricacies of cellular organization, such as how chromosomes line up and separate during cell division.


"Studies like this allow you to understand enough details of these motors to design small molecules to affect their function," said Spudich, who is also the Douglass M. and Nola Leishman Professor of Cardiovascular Disease. Toward this end he has co-founded a company, Cytokinetics, in hopes of creating drugs that selectively target molecular motors involved in cancer and cardiovascular disease.

For years, Spudich’s lab has studied molecular motors called myosins, proteins that carry out cellular motion by attaching to and "walking" along fibers of actin. The interaction of actin and myosin is the mechanism behind cell actions such as muscle contractions, the pinching off of two daughter cells from a mother cell during division and the hauling of cargo molecules around in a cell. Of the 18 types of myosin molecules, their current findings examine myosin VI, thought to be responsible for setting the tension for stereocilia, actin-filled rods on the sound-sensing hair cells of the inner ear. A defect in myosin VI results in deafness.

Although it was known that myosin moves along actin fibers, it had never previously been demonstrated how myosin could function as an anchor or a clamp. To study this, Spudich and Altman needed techniques beyond the realm of biology. "This is a problem for physicists who think in terms of forces and putting a load on a system," said Spudich. Altman specializes in optical tweezers, a focused laser that allows the manipulation of microscopic beads, and provided the required physics know-how by applying his expertise to studying myosin activity precisely.

The Cell paper includes a number of complex equations describing how the myosin VI anchor works, but the researchers have easily simplified the concept: think of the palm of an open hand as the hair cell and the fingers as the stereocilia. Myosin VI has two legs as well as a tail, which can bind to other things. The researchers think the myosin VI tail in the hair cell binds to the webbing between the fingers - the cell membrane between the stereocilia - and then as the legs walk across the palm (the hair cell) it pulls the webbing between the fingers taut which makes the stereocilia rigid.

As the motor continues walking, the taut membrane strains the motor and distorts its shape, which turns the motor into an anchor. If the webbing/membrane becomes slack again, the motor regains its normal shape and begins walking again. It continues walking until the membrane becomes taut again.

"You can imagine that if a motor like this didn’t stall, it would end up continuing to burn energy in the cell and would keep pulling this membrane, but it would be wasting a lot of energy," said Altman, who is first author of the paper. "So this change has made it a smart and efficient motor."

"The sophistication of what David has been able to do here in terms of looking at a single molecule and how it behaves is unusual," Spudich noted. "There are very few proteins in biology that have been analyzed and understood down to this level." Altman is now looking at defective myosin VI that causes deafness in hopes of learning even more about the precise refinement of the molecular motor.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>