Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of First Fungal Pathogen Unveiled

05.03.2004


Geneticists at the Duke Institute for Genome Sciences and Policy (IGSP) and the University of Basel have unveiled the complete genome sequence of the pathogenic plant fungus Ashbya gossypii, which infects agricultural crops including cotton and citrus fruits in the tropics. The fungus has the smallest genome yet characterized among free-living eukaryotes. Eukaryotes are the single-celled and multicellular organisms that include fungi, plants and animals.



The team -- led by Fred Dietrich, Ph.D., of the IGSP’s Center for Genome Technology, and Peter Phillipsen, Ph.D., of the University of Basel -- reported its findings online in the March 4, 2004, Science Express, the online version of the journal Science. The work was completed with the funding and collaboration of Novartis (now Syngenta) in Research Triangle Park, N.C. The researchers have no financial ties to Novartis or Syngenta.

The sequencing of the fungal genome has already shed light on the evolution of Saccharomyces cerevisiae -- the single-celled baker’s yeast that scientists rely on for the study of many basic questions in cell biology. Furthermore, understanding the infectious microbe’s genetic instructions might allow scientists to tease out the fundamental features responsible for some fungi’s ability to cause disease, the researchers said.


"We expect many similarities in function among all types of fungal pathogens -- whether they infect plants or humans," said Dietrich, first author of the study. "Understanding one will provide insight into fungal pathogens in general in terms of the forces that drive them."

Ashbya’s stripped-down genome -- containing just 9.2 million DNA base pairs, the fundamental building blocks of inheritance -- will further simplify the task of deciphering genes and their functions, he added. The genomes of other important fungal pathogens can include as many as 200 million base pairs, more than 20 times that of the Ashbya genome. In comparison, the genetic blueprints contained in each human cell run to some 6 billion DNA base pairs.

The researchers first sequenced the Ashbya genome three times over in many segments and assembled those pieces into the sequences of the fungus’ seven chromosomes. The team then filled in any remaining gaps in the initial scaffold through additional sequencing. By comparing the sequence information to the yeast genome, the investigators identified the location of genes along the chromosomes.

Ashyba’s 9.2 million base pair genome encodes 4,718 protein coding genes, the team reported. The fungus shares more than 90 percent of those with yeast, with most occurring in a similar gene order.

Further comparison of the Ashbya and yeast genomes revealed 300 instances of sequence inversion or movement of a segment from one location to another since the divergence of the two species. The analysis also revealed two copies of the majority of Ashbya genes in the yeast genome, evidence that the evolution of S. cerevisiae included a whole genome duplication.

The fully annotated sequence will be made publicly available on GenBank, the National Institutes of Health genetic sequence database.

"This is the culmination of the work of many people over more than 10 years," said Dietrich. "It’s very satisfying to finally be able to make this data public." The support of Novartis hinged on an agreement that the data not be made public until the genome was complete, he said.

Collaborators on the project included Philippe Luedi, of Duke University Medical Center; Sylvia Voegeli, Sophie Brachat, Ph.D., Anita Lerch, Sabine Steiner, Ph.D., Christine Mohr, Ph.D., and Rainer Pohlmann, Ph.D., of the University of Basel; Krista Gates, Albert Flavier, Ph.D., and Thomas Gaffney, Ph.D., of Syngenta Biotechnology in Research Triangle Park; and Sangdun Choi, Ph.D., and Rod Wing, Ph.D., of Clemson University in South Carolina.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7448

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>