Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of First Fungal Pathogen Unveiled

05.03.2004


Geneticists at the Duke Institute for Genome Sciences and Policy (IGSP) and the University of Basel have unveiled the complete genome sequence of the pathogenic plant fungus Ashbya gossypii, which infects agricultural crops including cotton and citrus fruits in the tropics. The fungus has the smallest genome yet characterized among free-living eukaryotes. Eukaryotes are the single-celled and multicellular organisms that include fungi, plants and animals.



The team -- led by Fred Dietrich, Ph.D., of the IGSP’s Center for Genome Technology, and Peter Phillipsen, Ph.D., of the University of Basel -- reported its findings online in the March 4, 2004, Science Express, the online version of the journal Science. The work was completed with the funding and collaboration of Novartis (now Syngenta) in Research Triangle Park, N.C. The researchers have no financial ties to Novartis or Syngenta.

The sequencing of the fungal genome has already shed light on the evolution of Saccharomyces cerevisiae -- the single-celled baker’s yeast that scientists rely on for the study of many basic questions in cell biology. Furthermore, understanding the infectious microbe’s genetic instructions might allow scientists to tease out the fundamental features responsible for some fungi’s ability to cause disease, the researchers said.


"We expect many similarities in function among all types of fungal pathogens -- whether they infect plants or humans," said Dietrich, first author of the study. "Understanding one will provide insight into fungal pathogens in general in terms of the forces that drive them."

Ashbya’s stripped-down genome -- containing just 9.2 million DNA base pairs, the fundamental building blocks of inheritance -- will further simplify the task of deciphering genes and their functions, he added. The genomes of other important fungal pathogens can include as many as 200 million base pairs, more than 20 times that of the Ashbya genome. In comparison, the genetic blueprints contained in each human cell run to some 6 billion DNA base pairs.

The researchers first sequenced the Ashbya genome three times over in many segments and assembled those pieces into the sequences of the fungus’ seven chromosomes. The team then filled in any remaining gaps in the initial scaffold through additional sequencing. By comparing the sequence information to the yeast genome, the investigators identified the location of genes along the chromosomes.

Ashyba’s 9.2 million base pair genome encodes 4,718 protein coding genes, the team reported. The fungus shares more than 90 percent of those with yeast, with most occurring in a similar gene order.

Further comparison of the Ashbya and yeast genomes revealed 300 instances of sequence inversion or movement of a segment from one location to another since the divergence of the two species. The analysis also revealed two copies of the majority of Ashbya genes in the yeast genome, evidence that the evolution of S. cerevisiae included a whole genome duplication.

The fully annotated sequence will be made publicly available on GenBank, the National Institutes of Health genetic sequence database.

"This is the culmination of the work of many people over more than 10 years," said Dietrich. "It’s very satisfying to finally be able to make this data public." The support of Novartis hinged on an agreement that the data not be made public until the genome was complete, he said.

Collaborators on the project included Philippe Luedi, of Duke University Medical Center; Sylvia Voegeli, Sophie Brachat, Ph.D., Anita Lerch, Sabine Steiner, Ph.D., Christine Mohr, Ph.D., and Rainer Pohlmann, Ph.D., of the University of Basel; Krista Gates, Albert Flavier, Ph.D., and Thomas Gaffney, Ph.D., of Syngenta Biotechnology in Research Triangle Park; and Sangdun Choi, Ph.D., and Rod Wing, Ph.D., of Clemson University in South Carolina.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7448

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>