Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 1.2 million new genes in Sargasso Sea microbes

05.03.2004


Department of Energy-funded researchers at the Institute for Biological Energy Alternatives (IBEA) have sequenced microbes in the Sargasso Sea and have discovered at least 1,800 new species and more than 1.2 million new genes. The results will be published in the journal Science. IBEA researchers’ discoveries include 782 new rhodopsin-like photoreceptor genes (only a few dozen have been characterized in microorganisms to date).



"What excites the Department and our Office of Science about this project is its range of potential benefits," Secretary of Energy Spencer Abraham said. "Scientists have used DOE funds to determine the genetic sequences of all the microorganisms occurring in a natural microbial community, which may lead to the development of new methods for carbon sequestration or alternative energy production. This will offer a direct and early test of one of the central tenets of DOE’s Genomics: GTL program – that microbes can be used to develop innovative solutions to address national energy needs."

DOE’s Office of Science has awarded $12 million to IBEA since 2001 for microbial genomics research. DOE funds IBEA as part of its Genomics: GTL program that includes over 70 research projects to universities, national laboratories and private companies. Dr. Venter’s research team at IBEA is addressing three scientific challenges: research on photosynthesis and hydrogen production to determine if the efficiency, and thus the utility, of these natural microbial processes can be greatly improved; strategies to create a synthetic minimal genome that may speed our ability to develop biology-based solutions for some of our most pressing energy and environmental challenges; and environmental genomics research that uses genomics approaches to discover new microbial capabilities that can be used to address DOE energy and environmental needs.


Obtaining the DNA sequence of the entire human genome, along with those of scores of microbes and other organisms, stands as one of the greatest achievements of the 20th century. Yet these complete genome sequences, the "recipes for life," serve merely as a foundation for the biology of the 21st century, the departure point for an effort aimed at the most far reaching of all biological goals: to achieve a better understanding of life. The Genomics: GTL program within DOE’s Office of Science is an important part of this effort. The program aims to develop the knowledge base and the national infrastructure for systems biology -- both experimental and computational -- needed to achieve this understanding.

The enormous amount of data to be collected by Genomics: GTL researchers dwarfs the data collected in the Human Genome Project. However, no amount of additional information will in itself yield the understanding sought. There remains a second, much deeper and complex challenge, that of deriving underlying theoretical and mathematical principles for biology and the development of sophisticated computer simulation and modeling tools to understand biological systems. Thus, the Genomics: GTL program will also depend on the department’s leadership in high performance computing to build the computational infrastructure needed for the new biology of Genomics: GTL.

While we know that the individual cells in a complex organism, like a plant or a human, work together to give those organisms life, even the simplest microbes often work together in complex microbial communities to perform their many functions including those of interest to DOE. Thus, a key component of Genomics: GTL is environmental genomics where researchers will characterize at the molecular level the functions of complex microbial communities in their natural environments.

As part of their contribution to the Genomics: GTL program, IBEA scientists determined the genetic sequences of all the microorganisms occurring in a natural microbial community. Microbes are prevalent in the environment -- there can be many thousands of different organisms in a teaspoon of soil or water -- but the Sargasso Sea was thought to be an environment with a manageable number of microbes.


IBEA, a nonprofit scientific research institution located in Rockville, Md., is seeking ways to use biology and genetics to reduce the amount of carbon dioxide that is released into the atmosphere by current sources of energy such as petroleum and coal. It also will seek to produce clean fuels.

Jeff Sherwood | EurekAlert!
Further information:
http://www.sorcerer2expedition.org
http://www.doegenomes.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>