Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 1.2 million new genes in Sargasso Sea microbes

05.03.2004


Department of Energy-funded researchers at the Institute for Biological Energy Alternatives (IBEA) have sequenced microbes in the Sargasso Sea and have discovered at least 1,800 new species and more than 1.2 million new genes. The results will be published in the journal Science. IBEA researchers’ discoveries include 782 new rhodopsin-like photoreceptor genes (only a few dozen have been characterized in microorganisms to date).



"What excites the Department and our Office of Science about this project is its range of potential benefits," Secretary of Energy Spencer Abraham said. "Scientists have used DOE funds to determine the genetic sequences of all the microorganisms occurring in a natural microbial community, which may lead to the development of new methods for carbon sequestration or alternative energy production. This will offer a direct and early test of one of the central tenets of DOE’s Genomics: GTL program – that microbes can be used to develop innovative solutions to address national energy needs."

DOE’s Office of Science has awarded $12 million to IBEA since 2001 for microbial genomics research. DOE funds IBEA as part of its Genomics: GTL program that includes over 70 research projects to universities, national laboratories and private companies. Dr. Venter’s research team at IBEA is addressing three scientific challenges: research on photosynthesis and hydrogen production to determine if the efficiency, and thus the utility, of these natural microbial processes can be greatly improved; strategies to create a synthetic minimal genome that may speed our ability to develop biology-based solutions for some of our most pressing energy and environmental challenges; and environmental genomics research that uses genomics approaches to discover new microbial capabilities that can be used to address DOE energy and environmental needs.


Obtaining the DNA sequence of the entire human genome, along with those of scores of microbes and other organisms, stands as one of the greatest achievements of the 20th century. Yet these complete genome sequences, the "recipes for life," serve merely as a foundation for the biology of the 21st century, the departure point for an effort aimed at the most far reaching of all biological goals: to achieve a better understanding of life. The Genomics: GTL program within DOE’s Office of Science is an important part of this effort. The program aims to develop the knowledge base and the national infrastructure for systems biology -- both experimental and computational -- needed to achieve this understanding.

The enormous amount of data to be collected by Genomics: GTL researchers dwarfs the data collected in the Human Genome Project. However, no amount of additional information will in itself yield the understanding sought. There remains a second, much deeper and complex challenge, that of deriving underlying theoretical and mathematical principles for biology and the development of sophisticated computer simulation and modeling tools to understand biological systems. Thus, the Genomics: GTL program will also depend on the department’s leadership in high performance computing to build the computational infrastructure needed for the new biology of Genomics: GTL.

While we know that the individual cells in a complex organism, like a plant or a human, work together to give those organisms life, even the simplest microbes often work together in complex microbial communities to perform their many functions including those of interest to DOE. Thus, a key component of Genomics: GTL is environmental genomics where researchers will characterize at the molecular level the functions of complex microbial communities in their natural environments.

As part of their contribution to the Genomics: GTL program, IBEA scientists determined the genetic sequences of all the microorganisms occurring in a natural microbial community. Microbes are prevalent in the environment -- there can be many thousands of different organisms in a teaspoon of soil or water -- but the Sargasso Sea was thought to be an environment with a manageable number of microbes.


IBEA, a nonprofit scientific research institution located in Rockville, Md., is seeking ways to use biology and genetics to reduce the amount of carbon dioxide that is released into the atmosphere by current sources of energy such as petroleum and coal. It also will seek to produce clean fuels.

Jeff Sherwood | EurekAlert!
Further information:
http://www.sorcerer2expedition.org
http://www.doegenomes.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>