Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries reveal that gene regulation is bipolar

05.03.2004


Two new studies, one to be published on 5 March 2004 in the journal Cell and the other published on 27 February 2004 in Molecular Cell, reveal a surprising relationship among the hordes of gene regulatory molecules that are the ultimate controllers of life processes. The surprise is that only a small portion of all genes--those needed to respond to emergencies--within a simple organism such as baker’s yeast are heavily regulated. Most other genes, in contrast, typically control more routine housekeeping functions of the cell and appear to require much less regulation. "It appears that the cell’s strategy is analogous to the way people run their lives--we focus more attention on emergencies like an asthma attack rather than on routine but essential housekeeping chores, like laundry," explains Frank Pugh, associate professor of biochemistry and molecular biology at Penn State and the leader of the research teams that made the discoveries.



In addition to Pugh, the researchers include graduate students Andrew D. Basehoar and Kathryn L. Huisinga, and Sara J. Zanton, a senior research technologist. "Often only a select few genes are intensively studied because they undergo lots of exciting regulation," Pugh says. "These highly regulated genes tend to respond to acute stresses like environmental toxins, heat, and viral infection, and are often taken as representative of the types of regulation governing most genes--but this appears not to be the case."

Now with the advent of DNA microarray technology, the regulation of all genes within an organism can be studied simultaneously. "Genome-wide approaches allow us to see the whole ’forest’ of genes rather than focusing on just a few of the ’trees’," Pugh says. By comparing the dependencies of every gene on the hordes of molecular regulators, Pugh noticed that most regulators tended to seek out the same small set of genes--those that typically respond to emergencies--while a select few regulators targeted the vast majority of the genome. When Pugh’s team examined some of these regulators in more detail, several additional surprises jumped out.


Basehoar focused on a gene regulatory sequence call the TATA box. While it has long been known that a TATA box is important for proper gene regulation, its exact DNA sequence had remained elusive, in large part due to the prevailing view that any DNA sequence consisting of a random arrangement of As and Ts--two of the four letters in the DNA code--would suffice to function as a TATA box. Basehoar took advantage of recent comparisons of the entire DNA sequence of several related yeast species. Such species have evolved sufficiently that only the DNA sequence of their genes and associated control regions have remain unchanged over time. Using a powerful statistical approach, Basehoar was able to fish out the sequence of the TATA box since it had remained unchanged at many genes. Other sequences that also were rich in As and Ts changed from one species to another, indicating that they have little importance.

As Pugh explains, "It was reassuring that the proposed TATA box sequence passed two additional tests. First, the sequence often resided just upstream of genes, which is where gene regulatory sequences are found. Other A/T-rich sequences were scattered more or less randomly throughout the genome. Second, the expression of genes that contain a TATA box was impaired by genetic mutations along the DNA-binding surface of a protein that normally interacts with the TATA box. We reasoned that genes that have a TATA box are likely to depend on its interaction with its protein-binding partner."

Pugh’s study reveals that a TATA box is associated with only a small portion of all yeast genes, which goes against the prevailing view that the TATA box is essential to all genes. "This result, plus the knowledge that, all genes are regulated by the TATA binding protein, even those lacking a TATA box, lead us to the second discovery in this study," Pugh says. Guided by hints from recent studies that the TATA binding protein is delivered to genes by either of two massive protein complexes called SAGA and TFIID, Pugh decided to use microarray experiments to investigate the effect of eliminating one complex or the other. Huisinga, who performed these experiments, found that a small fraction of all yeast genes depend primarily on SAGA to deliver the TATA binding protein, while the vast majority of genes depend upon TFIID for delivery. Strikingly, as Pugh puts it, "Genes that used SAGA typically had a TATA box, while genes that used TFIID lacked a TATA box. This was surprising in that it has long been thought that TFIID delivers the TATA binding protein to genes that have a TATA box."

One final question remained: Was there any connection between the SAGA-TATA relationship and the highly regulated set of emergency-response genes? Indeed, the researchers discovered that there was a strong overlap between the two groups. "Emergency-response genes are designed to be turned on when needed and to be turned off when not needed, which requires a lot of regulation," Pugh explains. "On the other hand, housekeeping genes may not need as much attention, although steady expression of these genes is essential. TFIID may be particularly suited for this role. "

These studies may help guide researchers who are trying to understand a gene’s function and its regulation by giving them some useful clues about where to start looking. "If your favorite gene has a TATA box then there is a good chance that it may be subjected to a lot of regulation, and there is a good chance that it may be responding to environmental stress or other transient needs of the cell," Pugh says.

In addition, his lab’s findings likely are applicable to genetic studies of higher eukaryotes, including humans, because the regulatory processes involved are highly conserved throughout evolution. "Perhaps we can apply this research to the human genome to study other types of highly regulated responses in addition to stress, such as embryonic development," Pugh says.


This research was supported by the National Institutes of Health.

Contacts:
Frank Pugh: (+1) 814-863-8252, bfp2@psu.edu
Barbara Kennedy: (+1) 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>