Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty DNA replication linked to neurological diseases

05.03.2004


Lengthy sequences of DNA -- with their component triplet of nucleotides repeated hundreds, even thousands of times -- are known to be abnormal, causing rare but devastating neurological diseases. But how does the DNA get this way? How does it go haywire, multiplying out of control?



In the current issue of Molecular and Cellular Biology, Sergei Mirkin, professor of biochemistry and molecular genetics at the University of Illinois at Chicago College of Medicine, explains the mechanism, providing an important clue to the origin of these diseases.

Mirkin and Maria Krasilnikova, a research assistant professor in his lab, studied the sequence of a simple repeat of three nucleotides responsible for Friedreich’s ataxia, the most commonly inherited form of ataxias, which causes progressive damage to the nervous system, resulting in symptoms ranging from muscle weakness and speech problems to heart disease.


The DNA triplet that repeats in Friedreich’s ataxia is a guanine and two adenines (GAA) on one DNA strand and the complementary two thymines and a cytosine (TTC) on the opposite strand.

Earlier research had shown that up to 40 repeats of this nucleotide triplet do not cause any symptoms. The DNA is inherited as is, an odd but harmless pattern passed down from one generation to the next.

The problems begin when the repeats exceed 40.

"For Friedreich’s ataxia and other neurological diseases, when the number of repeats exceeds 40, the sequence becomes unstable. That means that as the sequence is passed from one generation to the next, it gets longer. The longer it gets, the more likely it will get still longer. And the longer it gets, the worse the disease," Mirkin said. "Basically, even if you are more or less okay, there is a probability that your kids will be sick and a still higher probability that your grandkids will be even sicker."

To study how and why the inherited sequence expands so rapidly, the scientists watched the replication of different lengths of the triplet repeat sequence, using a simple unicellular organism, yeast, as a convenient model. While yeast is far more primitive than humans, its mechanism of DNA replication is remarkably similar.

The researchers found that replication of normal-size repeats proceeded without a hitch.

With larger-length sequences, however, the replication machinery got stuck and replication stalled. According to Mirkin, this temporary stoppage is probably caused by the formation of an unusual three-stranded DNA structure. He first discovered such odd DNA structures during his post-doctoral studies back in 1987, though at the time their significance was unclear.

"I was really delighted to finally find that they have a biological role," Mirkin said.

In their current study, Mirkin and Krasilnikova found that when replication stalled, the triplet repeat multiplied, creating longer and longer threads of DNA.

"It’s like a car getting stuck in a pothole. You keep spinning the wheels to get out of the pothole, but the more the wheels spin, the more mileage you put on the car, the more repeating units you add to your DNA," Mirkin said.

The researchers also found that the aberrant lengthening of the sequence was more likely if replication began in one direction rather than the other, starting from the TTC strand rather than the GAA strand.

Mirkin and Krasilnikova believe their results apply to many other neurological diseases linked to lengthy repeats, including myotonic dystrophy, fragile X mental retardation and Huntington’s disease.

"Different genes and different parts of those different genes are involved in these diseases. But there is one common feature: when the number of repetitive units is small, under 40, they are harmless. Over that threshold, the repeats multiply, expanding with each replication and causing rare, but very serious neurological disorders that worsen as the length of the repeats grows," Mirkin said.

"Individuals can be carriers of relatively long stretches of nucleotide repeats, with no apparent clinical consequences. But then some as yet unknown event triggers the addition of an extra triplet or two, and the threshold is crossed," Mirkin said. "Once replication stalls, there is no way back."

Mirkin hypothesizes that the triggering event might be a switch in orientation, "but the million dollar question is what causes that switch."


The study was funded by the National Institute of General Medical Sciences, one of the National Institutes of Health.

Sharon Butler | UIC
Further information:
http://tigger.uic.edu/htbin/cgiwrap/bin/newsbureau/cgi-bin/index.cgi?from=Releases&to=Release&id=723&frommain=1
http://www.uic.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>