Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa researchers describe method of protecting chromosomes during cell division

05.03.2004


One hallmark of most cancer cells is that they have the incorrect number of chromosomes, a state called aneuploidy. Now, researchers at the University of Virginia Health System, writing in a recent issue of the journal Current Biology, think they know how cells protect themselves from aneuploidy when they divide in a process known as mitosis. "During mitosis, the cell divides replicated chromosomes to two daughter cells. We are studying a mitotic system that ensures that each cell receives the right number of chromosomes," said article co-author Todd Stukenberg, assistant professor of biochemistry and molecular genetics at U.Va.



To function effectively, a human cell must have one copy of 46 different chromosomes, each containing two exact copies of a long DNA strand packaged into two sister chromatids. When a cell divides, it forms a spindle made up of thin polymers called microtubules extending from opposing sides of the cell.

During division, however, the cell is faced with a monumental sorting problem since all chromosomes look alike. So, nature has devised a solution – microtubules from one side of the cell must bind one chromatid, while microtubules from the other side bind the other. The cell then uses these microtubule connections to pull the two sister chromatids to opposite sides of the cell, and the cell is then cleaved between the two DNA masses. Aneuploidy may occur when this process goes awry and microtubules from opposite sides of the cell bind the same chromatid, which becomes stuck since it is pulled in both directions, Stukenberg said.


According to the study, researchers at the U.Va.’s Department of Biochemisty and Molecular Genetics, working with colleagues in U.Va.’s Department of Chemistry, have uncovered a mechanism that could correct these improper attachments – proteins that release improper microtubule attachments. A protein called Aurora B loads a substance called MCAK (mitotic centromere-associated kinesin) onto the chromosome in an inactive state. When a microtubule from the wrong side of the cell binds a chromatid, MCAK is activated and removes the improperly attached microtubule.

"Aurora B is a regulatory protein that has been previously implicated in this process," Stukenberg said. "It is very satisfying to find that a protein which it is regulating has the enzymatic activity required to remove improperly-attached microtubules. Many questions remain, however, and we at U.Va. are focusing on how MCAK is activated by improper attachments."

Aurora B is a kinase that regulates proteins by modifying amino acids. The researchers identified the specific amino acid on MCAK that was modified by Aurora B, and showed that the modification regulates MCAK activity. Cell injection studies showed the sites where this modification happens, which is crucial for the correct attachment of chromatids and microtubules during mitosis. The researchers also stained cells by immunofluorescence with antibodies to MCAK, phosphorylated MCAK and Aurora B, suggesting that Aurora B regulates MCAK to destroy incorrectly attached microtubules.

Early in the 20th century, some scientists proposed that aneuploidy may be one cause of cancer, Stukenberg said, but that theory was largely ignored for many years.

Now, recent research has "reinvigorated the theory," he said. "So it is important to study whether mutations in Aurora, MCAK or the inability to resolve improper microtubule attachments, is involved in tumor genesis. It is already clearly established that the Aurora family of kinases is overexpressed in many cancerous solid tumors."


Contributing to the study were the Department of Pathology at U.Va., and the Departments of Biology, Biochemistry and Molecular Biology, and Anatomy and Cell Biology at Indiana University.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>