Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A world ruled by fungi

05.03.2004


The catastrophe that extinguished the dinosaurs and other animal species, 65 million years ago also brought dramatic changes to the vegetation. In a study presented in latest issue of the journal Science, the paleontologists Vivi Vajda from the University of Lund, Sweden and Stephen McLoughlin from the Queensland University of Technology, Australia have described what happened to the vegetation month by month. They depict a world in darkness where the fungi had taken over.



It´s known that an asteroid hit the Yucatan peninsula in Mexico at the end of the Cretaceous Period. It left a 180 km wide crater and from the impact site tsunamis developed and the Caribbean region was buried in ash and other debris. The consequences of the asteroid impact were global. Vajda and her colleagues have previously studied the broad-scale changes in the New Zealand vegetation following the impact, but now they have dramatically improved our view of the timing of events.

At the end of the Cretaceous the vegetation on New Zealand was dominated by conifers and flowering plants. Many of these species disappeared suddenly at the end of the Period and were instead replaced by fungal spores and fungal threads preserved in a four millimeter thick layer of coal. The layer coincides with fallout of iridium, an element rare in Earth’s crust but which abounds in asteroids.


-We have managed to reconstruct the event month by month, with a very high time resolution, says Vivi Vajda. During a very short period - from between a few months to a couple of years – the fungi and other saprophytes which live on dead organisms must have been the dominating life form on Earth. Atmospheric dust blocked the sunlight and led to the death of plants that are dependent on photosynthesis.

The layer of fossil fungi is followed by a 60 cm thick interval containing traces of the recovery flora, which re-established relatively quickly, ground ferns at first, followed after decades to hundreds of years by more diverse, woody vegetation.

A similar layer of fungi and algae is known from a previous catastrophe which happened 251 million years ago at the Permian-Triassic boundary. This was an even greater mass extinction: about 90% of the existing species disappeared. Research will now focus on whether the similar biological signatures at these mass extinctions reflect similar causal mechanisms.

Göran Frankel | alfa
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>