Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse model of neuromuscular disease identifies key player in motor neuron death


Scientists have created a new mouse model for spinal and bulbar muscular atrophy (SBMA), a disease characterized by adult-onset progressive weakness and degeneration of limb muscles, often resulting in the patient being confined to a wheel chair. SBMA causes the death of cells called motor neurons that control muscle function. The study, published in the March 4 issue of Neuron, presents a clearer picture of the pathology underlying SBMA and associated diseases and even points to a possible therapeutic strategy for this debilitating condition and for more common motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), that currently have no proven treatments.

SBMA belongs to a group of neurodegenerative disorders, called polyglutamine diseases, that includes Huntington’s disease and spinocerebellar ataxias. Polyglutamine diseases are thought to arise because of a mutant protein that is misfolded and subsequently clumps together to form toxic aggregates that destroy cell function and cause disease. In SBMA, a mutated gene directs production of androgen receptors with an abnormal number of consecutive residues of the amino acid glutamine. Dr. Albert R. La Spada and colleagues from the University of Washington Medical Center in Seattle created transgenic mice containing the human androgen receptor carrying 100 glutamine repeats. The mice developed a gradually progressive limb weakness around mid-adulthood that was accompanied by motor neuron degeneration, strikingly similar to what is seen in human SBMA patients. The researchers determined that the abnormal androgen receptor interfered with production of a molecule called vascular endothelial growth factor (VEGF) that is important for the general health and survival of motor neurons. Interestingly, VEGF could rescue SBMA-like motor neurons grown in the laboratory.

The researchers conclude that VEGF may play a pivotal role in motor neuron degeneration. "Our findings in SBMA suggest that activation of the VEGF pathway may be one way that the motor neuron protects itself from harmful insults and stresses. Studies of ALS (amyotrophic lateral sclerosis) also point to the VEGF axis as critical for motor neuron health, so it is distinctly possible that all motor neuron diseases share interruption of the VEGF axis as part of their pathogenesis," explains Dr. La Spada. "If this is true, then it would have dramatic implications for treatment of motor neuron diseases."

Bryce L. Sopher, Patrick S. Thomas, Jr., Michelle A. LaFevre-Bernt, Ida E. Holm, Scott A. Wilke, Carol B. Ware, Lee-Way Jin, Randell T. Libby, Lisa M. Ellerby, and Albert R. La Spada: "Androgen Receptor YAC Transgenic Mice Recapitulate SBMA Motor Neuronopathy and Implicate VEGF164 in the Motor Neuron Degeneration"

Published in Neuron, Volume 41, Number 5, 4 March 2004, pages 687-699.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>