Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean’s Surface Could Have Big Impact On Air Quality, Study Says

04.03.2004


Certain ions bouncing around on the ocean’s surface and in droplets formed by waves may play a role in increasing ozone levels in the air we breathe, new research suggests.



These ions cover the surface of the sea in an ultra-thin blanket – about one-millionth the thickness of a sheet of paper. Researchers call this region the "interface."

Using a technique that employs highly accurate laser beams, chemists for the first time saw the actual structures formed by these halogen ions, or halides. They could see just how molecules of water surround these ions and also determine the halides’ whereabouts within the interfacial area.


This kind of information can help researchers predict which halides are more likely to react with other chemicals and ultimately form ozone, a naturally occurring gas which enhances the upper atmosphere’s defense against harmful ultraviolet rays.

"Interfacial halides have a significant effect on atmospheric chemistry which, in turn, could pose serious implications for respiratory health," said Heather Allen, the study’s lead author and an assistant professor of chemistry at Ohio State University. The study appears in the current issue of the Journal of Physical Chemistry – B.

Scientists have noted increased ozone levels in urban areas near seawater, and suspect that halides may play a key role.

"In marine areas, halides can react with other molecules that form ozone and ultimately increase ozone production in nearby urban areas," Allen said.

While the ozone layer in the upper atmosphere is essential for shielding the earth from some solar radiation, high amounts of ozone in the lower atmosphere can cause serious respiratory problems.

In a series of laboratory experiments, Allen and her colleagues studied water structures created by three halides commonly found in the marine interfacial zone – chloride, bromide and iodide.

The researchers mixed each halide with water to create experimental interfacial zones. They then projected two beams of laser light onto each solution in an attempt to see the structure and location of each halide in the interface.

Allen said that while these kinds of pristine interfaces wouldn’t be found on the ocean’s surface, where many more chemicals are at play, knowing the concentration and structure of interfacial halides could help scientists better understand atmospheric chemistry.

"Studying liquid surfaces is difficult," Allen said. "They may look flat, but they’re nowhere near flat on a molecular level. The addition of halides and other chemicals alters water’s surface structure."

When mixed with water, halogen salts become halides – charged particles that, by nature, are unstable and are looking to combine with other elements in order to regain their stability. Two of these halides – iodide and bromide – like to combine with ozone-forming chemicals.

"Even though the halides are only one part of the chemical mix in the interface, we didn’t really understand how important they were to atmospheric chemistry until we were able to separate out their individual characteristics," Allen said.

The researchers found that the concentrations of halides changed deeper into the interfacial layer. Iodide ions favored the surface of the interface, followed by bromide ions. Chloride ions were in abundance in the lower portion of the interface and did not affect the water’s surface structure. By virtue of their position in the interface, the iodide and bromide may have a greater impact on the air we breathe.

"Iodide turned out to be the most important halide when it came to surface reactions, because it had the highest concentration at the interfacial surface," said Allen, adding that just a little iodide or bromide can influence ozone creation. Chloride appears to be less likely to do so.

"Halogens compete with other radicals that are normally used to create ozone," Allen said. "But when enough halogen radicals are available, they actually react faster than do other radicals.

She said the next step is to examine the actual reactions between the halides and non-halogen molecules near the sea surface to see if they can actually determine how much ozone is formed and where it’s created in greatest quantities.

Allen conducted the study with fellow Ohio State researchers Dingfang Liu, Gang Ma and Lori Levering. The team received funding for this work from the National Science Foundation-funded Ohio State Environmental Molecular Science Institute and in part by Research Corporation, based in Tucson, Ariz.


Contact: Heather Allen, (614) 292-4707;
Allen@chemistry.ohio-state.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/marinair.htm

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>