Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean’s Surface Could Have Big Impact On Air Quality, Study Says

04.03.2004


Certain ions bouncing around on the ocean’s surface and in droplets formed by waves may play a role in increasing ozone levels in the air we breathe, new research suggests.



These ions cover the surface of the sea in an ultra-thin blanket – about one-millionth the thickness of a sheet of paper. Researchers call this region the "interface."

Using a technique that employs highly accurate laser beams, chemists for the first time saw the actual structures formed by these halogen ions, or halides. They could see just how molecules of water surround these ions and also determine the halides’ whereabouts within the interfacial area.


This kind of information can help researchers predict which halides are more likely to react with other chemicals and ultimately form ozone, a naturally occurring gas which enhances the upper atmosphere’s defense against harmful ultraviolet rays.

"Interfacial halides have a significant effect on atmospheric chemistry which, in turn, could pose serious implications for respiratory health," said Heather Allen, the study’s lead author and an assistant professor of chemistry at Ohio State University. The study appears in the current issue of the Journal of Physical Chemistry – B.

Scientists have noted increased ozone levels in urban areas near seawater, and suspect that halides may play a key role.

"In marine areas, halides can react with other molecules that form ozone and ultimately increase ozone production in nearby urban areas," Allen said.

While the ozone layer in the upper atmosphere is essential for shielding the earth from some solar radiation, high amounts of ozone in the lower atmosphere can cause serious respiratory problems.

In a series of laboratory experiments, Allen and her colleagues studied water structures created by three halides commonly found in the marine interfacial zone – chloride, bromide and iodide.

The researchers mixed each halide with water to create experimental interfacial zones. They then projected two beams of laser light onto each solution in an attempt to see the structure and location of each halide in the interface.

Allen said that while these kinds of pristine interfaces wouldn’t be found on the ocean’s surface, where many more chemicals are at play, knowing the concentration and structure of interfacial halides could help scientists better understand atmospheric chemistry.

"Studying liquid surfaces is difficult," Allen said. "They may look flat, but they’re nowhere near flat on a molecular level. The addition of halides and other chemicals alters water’s surface structure."

When mixed with water, halogen salts become halides – charged particles that, by nature, are unstable and are looking to combine with other elements in order to regain their stability. Two of these halides – iodide and bromide – like to combine with ozone-forming chemicals.

"Even though the halides are only one part of the chemical mix in the interface, we didn’t really understand how important they were to atmospheric chemistry until we were able to separate out their individual characteristics," Allen said.

The researchers found that the concentrations of halides changed deeper into the interfacial layer. Iodide ions favored the surface of the interface, followed by bromide ions. Chloride ions were in abundance in the lower portion of the interface and did not affect the water’s surface structure. By virtue of their position in the interface, the iodide and bromide may have a greater impact on the air we breathe.

"Iodide turned out to be the most important halide when it came to surface reactions, because it had the highest concentration at the interfacial surface," said Allen, adding that just a little iodide or bromide can influence ozone creation. Chloride appears to be less likely to do so.

"Halogens compete with other radicals that are normally used to create ozone," Allen said. "But when enough halogen radicals are available, they actually react faster than do other radicals.

She said the next step is to examine the actual reactions between the halides and non-halogen molecules near the sea surface to see if they can actually determine how much ozone is formed and where it’s created in greatest quantities.

Allen conducted the study with fellow Ohio State researchers Dingfang Liu, Gang Ma and Lori Levering. The team received funding for this work from the National Science Foundation-funded Ohio State Environmental Molecular Science Institute and in part by Research Corporation, based in Tucson, Ariz.


Contact: Heather Allen, (614) 292-4707;
Allen@chemistry.ohio-state.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/marinair.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>