Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map ’super-tree’ of flowering plants, solving Darwin’s "abominable mystery"

26.02.2004


The secret of how flowering plants evolved into one of the Earth’s most dominant and diverse groups of organisms is revealed in study led by researchers from the Royal Botanic Gardens, Kew and Imperial College London.

Described by Charles Darwin as an "abominable mystery", the team publish the first complete evolutionary ’super-tree’ of relationships among all families of flowering plants in current edition of the Proceedings of the National Academy of Science.

Using a combination of DNA sequence data and statistical techniques for analysing biodiversity, the team concludes that Darwin’s suspicion that there is not a simple explanation for the large biodiversity of flowering plants was correct.



Dr Tim Barraclough of Imperial’s Department of Biological Sciences and the Royal Botanic Gardens, Kew, says:

"The idea that key evolutionary innovations drive an organism’s ability to diversify has been popular with evolutionary biologists for the past 10 years or so. But there’s a growing consensus that pinning the success of any group on a single innovation, such as insect fertilisation in the case of flowering plants, is too simplistic."

"Instead, the diversity of flowering plant families is the result of interaction between existing biological traits and the environment in which the plant grows. Effectively biodiversity depends on being the right plant in the right place at the right time."

"For example, grasses appear to be very successful because they have a suite of traits that allows them to thrive in cooler and drier environments. Their form of growth also makes them resistant to fire. But the same traits would not confer abundance and diversity in warmer, wetter environments."

In a letter to Joseph Hooker, Kew’s first Director, in 1879, Darwin outlined his "abominable mystery" of flowering plants’ rapid diversification. Darwin described his own efforts to identify a single cause as "wretchedly poor".

Subsequent attempts to understand this diversity have been revolutionized by the recent advent of molecular phylogenetics, which uses DNA sequence analysis to map evolutionary relationships. Using this technique, the team were able to compile the wealth of data from over 40 previous large-scale DNA studies on flowering plants into one super-tree.

"Even a decade ago, researchers said it was impossible to build a complete tree of flowering plant families. But recent advances in molecular phylogenetics have heralded a new era in analysing biodiversity," explains Dr Vincent Savolainen of the Royal Botanic Gardens, Kew.

"Our examination of the top 10 major shifts in diversification, which include the grass family and the pea family, indicates they cannot easily be attributed to the action of a few key innovations."

Dr Savolainen added: "The new super-tree will be a unique resource for future studies on plant diversity, ranging from biodiversity, gene evolution and ecological studies. It represents a major step towards the ’Tree of Life’, an international effort to recover the evolutionary relationships of all 1.5 million known species on Earth."

Dr Tim Barraclough and Professor Mark Chase are Royal Society University Research Fellows.

Hannah Rogers | Imperial College London
Further information:
http://www.imperial.ac.uk/P4929.htm
http://tolweb.org/tree/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>