Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map ’super-tree’ of flowering plants, solving Darwin’s "abominable mystery"

26.02.2004


The secret of how flowering plants evolved into one of the Earth’s most dominant and diverse groups of organisms is revealed in study led by researchers from the Royal Botanic Gardens, Kew and Imperial College London.

Described by Charles Darwin as an "abominable mystery", the team publish the first complete evolutionary ’super-tree’ of relationships among all families of flowering plants in current edition of the Proceedings of the National Academy of Science.

Using a combination of DNA sequence data and statistical techniques for analysing biodiversity, the team concludes that Darwin’s suspicion that there is not a simple explanation for the large biodiversity of flowering plants was correct.



Dr Tim Barraclough of Imperial’s Department of Biological Sciences and the Royal Botanic Gardens, Kew, says:

"The idea that key evolutionary innovations drive an organism’s ability to diversify has been popular with evolutionary biologists for the past 10 years or so. But there’s a growing consensus that pinning the success of any group on a single innovation, such as insect fertilisation in the case of flowering plants, is too simplistic."

"Instead, the diversity of flowering plant families is the result of interaction between existing biological traits and the environment in which the plant grows. Effectively biodiversity depends on being the right plant in the right place at the right time."

"For example, grasses appear to be very successful because they have a suite of traits that allows them to thrive in cooler and drier environments. Their form of growth also makes them resistant to fire. But the same traits would not confer abundance and diversity in warmer, wetter environments."

In a letter to Joseph Hooker, Kew’s first Director, in 1879, Darwin outlined his "abominable mystery" of flowering plants’ rapid diversification. Darwin described his own efforts to identify a single cause as "wretchedly poor".

Subsequent attempts to understand this diversity have been revolutionized by the recent advent of molecular phylogenetics, which uses DNA sequence analysis to map evolutionary relationships. Using this technique, the team were able to compile the wealth of data from over 40 previous large-scale DNA studies on flowering plants into one super-tree.

"Even a decade ago, researchers said it was impossible to build a complete tree of flowering plant families. But recent advances in molecular phylogenetics have heralded a new era in analysing biodiversity," explains Dr Vincent Savolainen of the Royal Botanic Gardens, Kew.

"Our examination of the top 10 major shifts in diversification, which include the grass family and the pea family, indicates they cannot easily be attributed to the action of a few key innovations."

Dr Savolainen added: "The new super-tree will be a unique resource for future studies on plant diversity, ranging from biodiversity, gene evolution and ecological studies. It represents a major step towards the ’Tree of Life’, an international effort to recover the evolutionary relationships of all 1.5 million known species on Earth."

Dr Tim Barraclough and Professor Mark Chase are Royal Society University Research Fellows.

Hannah Rogers | Imperial College London
Further information:
http://www.imperial.ac.uk/P4929.htm
http://tolweb.org/tree/

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>