Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chicken genome assembled

02.03.2004


First avian genome now available to scientists worldwide



The National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), today announced that the first draft of the chicken genome sequence has been deposited into free public databases for use by biomedical and agricultural researchers around the globe.

A team led by Richard Wilson, Ph.D., from the Washington University School of Medicine in St. Louis successfully assembled the genome of the Red Jungle Fowl, Gallus gallus, which is the ancestor of domestic chickens. Comprised of about 1 billion DNA base pairs, the chicken genome is the first avian genome to be sequenced.


The Washington University researchers have deposited the initial assembly, which is based on seven-fold sequence coverage of the chicken genome, into the public database, GenBank (www.ncbi.nih.gov/Genbank). In turn, GenBank will distribute the sequence data to the European Molecular Biology Laboratory’s Nucleotide Sequence Database, EMBL-Bank (www.ebi.ac.uk/embl/index.html), and the DNA Data Bank of Japan, DDBJ (www.ddbj.nig.ac.jp).

To facilitate comparative genomic analysis, the researchers also have aligned the draft version of the chicken sequence with the human sequence. Those alignments can be scanned using the University of California, Santa Cruz’s Genome Browser, (http://genome.ucsc.edu/cgi-bin/hgGateway); the National Center for Biotechnology Information’s Map Viewer, (www.ncbi.nlm.nih.gov/mapview); and the European Bioinformatics Institute’s Ensembl system, (http://www.ensembl.org/).

Sequencing of the chicken genome began in March 2003. NHGRI provided about $13 million in funding for the project.

In addition, using the Gallus gallus genome sequence assembled by Washington University as a reference framework, an international team, led by the Beijing Genomics Institute in China and supported by the Wellcome Trust in Britain, has created a map of genetic variation for three different strains of domestic chickens. The strains were a broiler strain from the United Kingdom, a layer strain from Sweden and a Silkie strain from China. To make the map, researchers identified and analyzed about 2 million genetic variation sites, mostly single nucleotide polymorphisms (SNPs). The genetic variation data will soon be deposited into GenBank, from which the data will be freely accessible to researchers worldwide.

Recent outbreaks of avian flu have accelerated scientists’ interest in learning more about the chicken genome and how genetic variation may play a role in the susceptibility of different strains to the disease. In addition to its tremendous economic value as a source of eggs and meat, the chicken is widely used in biomedical research. It serves as an important model for the study of embryology and development, as well as for research into the connection between viruses and some types of cancer.

The chicken also is well positioned from an evolutionary standpoint to provide an intermediate perspective between mammals, such as humans, and lower vertebrates, such as fish. By comparing the human genome sequence with those of other organisms, researchers can identify regions of similarity and difference. This information can help scientists better understand the structure and function of genes and thereby develop new strategies to combat human disease.

Geoff Spencer | EurekAlert!
Further information:
http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/Chicken_Genome.pdf
http://genome.gov.

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>