Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chicken genome assembled

02.03.2004


First avian genome now available to scientists worldwide



The National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), today announced that the first draft of the chicken genome sequence has been deposited into free public databases for use by biomedical and agricultural researchers around the globe.

A team led by Richard Wilson, Ph.D., from the Washington University School of Medicine in St. Louis successfully assembled the genome of the Red Jungle Fowl, Gallus gallus, which is the ancestor of domestic chickens. Comprised of about 1 billion DNA base pairs, the chicken genome is the first avian genome to be sequenced.


The Washington University researchers have deposited the initial assembly, which is based on seven-fold sequence coverage of the chicken genome, into the public database, GenBank (www.ncbi.nih.gov/Genbank). In turn, GenBank will distribute the sequence data to the European Molecular Biology Laboratory’s Nucleotide Sequence Database, EMBL-Bank (www.ebi.ac.uk/embl/index.html), and the DNA Data Bank of Japan, DDBJ (www.ddbj.nig.ac.jp).

To facilitate comparative genomic analysis, the researchers also have aligned the draft version of the chicken sequence with the human sequence. Those alignments can be scanned using the University of California, Santa Cruz’s Genome Browser, (http://genome.ucsc.edu/cgi-bin/hgGateway); the National Center for Biotechnology Information’s Map Viewer, (www.ncbi.nlm.nih.gov/mapview); and the European Bioinformatics Institute’s Ensembl system, (http://www.ensembl.org/).

Sequencing of the chicken genome began in March 2003. NHGRI provided about $13 million in funding for the project.

In addition, using the Gallus gallus genome sequence assembled by Washington University as a reference framework, an international team, led by the Beijing Genomics Institute in China and supported by the Wellcome Trust in Britain, has created a map of genetic variation for three different strains of domestic chickens. The strains were a broiler strain from the United Kingdom, a layer strain from Sweden and a Silkie strain from China. To make the map, researchers identified and analyzed about 2 million genetic variation sites, mostly single nucleotide polymorphisms (SNPs). The genetic variation data will soon be deposited into GenBank, from which the data will be freely accessible to researchers worldwide.

Recent outbreaks of avian flu have accelerated scientists’ interest in learning more about the chicken genome and how genetic variation may play a role in the susceptibility of different strains to the disease. In addition to its tremendous economic value as a source of eggs and meat, the chicken is widely used in biomedical research. It serves as an important model for the study of embryology and development, as well as for research into the connection between viruses and some types of cancer.

The chicken also is well positioned from an evolutionary standpoint to provide an intermediate perspective between mammals, such as humans, and lower vertebrates, such as fish. By comparing the human genome sequence with those of other organisms, researchers can identify regions of similarity and difference. This information can help scientists better understand the structure and function of genes and thereby develop new strategies to combat human disease.

Geoff Spencer | EurekAlert!
Further information:
http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/Chicken_Genome.pdf
http://genome.gov.

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>