Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chicken genome assembled

02.03.2004


First avian genome now available to scientists worldwide



The National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), today announced that the first draft of the chicken genome sequence has been deposited into free public databases for use by biomedical and agricultural researchers around the globe.

A team led by Richard Wilson, Ph.D., from the Washington University School of Medicine in St. Louis successfully assembled the genome of the Red Jungle Fowl, Gallus gallus, which is the ancestor of domestic chickens. Comprised of about 1 billion DNA base pairs, the chicken genome is the first avian genome to be sequenced.


The Washington University researchers have deposited the initial assembly, which is based on seven-fold sequence coverage of the chicken genome, into the public database, GenBank (www.ncbi.nih.gov/Genbank). In turn, GenBank will distribute the sequence data to the European Molecular Biology Laboratory’s Nucleotide Sequence Database, EMBL-Bank (www.ebi.ac.uk/embl/index.html), and the DNA Data Bank of Japan, DDBJ (www.ddbj.nig.ac.jp).

To facilitate comparative genomic analysis, the researchers also have aligned the draft version of the chicken sequence with the human sequence. Those alignments can be scanned using the University of California, Santa Cruz’s Genome Browser, (http://genome.ucsc.edu/cgi-bin/hgGateway); the National Center for Biotechnology Information’s Map Viewer, (www.ncbi.nlm.nih.gov/mapview); and the European Bioinformatics Institute’s Ensembl system, (http://www.ensembl.org/).

Sequencing of the chicken genome began in March 2003. NHGRI provided about $13 million in funding for the project.

In addition, using the Gallus gallus genome sequence assembled by Washington University as a reference framework, an international team, led by the Beijing Genomics Institute in China and supported by the Wellcome Trust in Britain, has created a map of genetic variation for three different strains of domestic chickens. The strains were a broiler strain from the United Kingdom, a layer strain from Sweden and a Silkie strain from China. To make the map, researchers identified and analyzed about 2 million genetic variation sites, mostly single nucleotide polymorphisms (SNPs). The genetic variation data will soon be deposited into GenBank, from which the data will be freely accessible to researchers worldwide.

Recent outbreaks of avian flu have accelerated scientists’ interest in learning more about the chicken genome and how genetic variation may play a role in the susceptibility of different strains to the disease. In addition to its tremendous economic value as a source of eggs and meat, the chicken is widely used in biomedical research. It serves as an important model for the study of embryology and development, as well as for research into the connection between viruses and some types of cancer.

The chicken also is well positioned from an evolutionary standpoint to provide an intermediate perspective between mammals, such as humans, and lower vertebrates, such as fish. By comparing the human genome sequence with those of other organisms, researchers can identify regions of similarity and difference. This information can help scientists better understand the structure and function of genes and thereby develop new strategies to combat human disease.

Geoff Spencer | EurekAlert!
Further information:
http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/Chicken_Genome.pdf
http://genome.gov.

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>